Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ...Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages ...Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages of the two-dimensional variational mode decomposition(2DVMD)algorithm and dark channel prior.The original hazy image is adaptively decom-posed into low-frequency and high-frequency images according to the image frequency band by using the 2DVMD algorithm.The low-frequency image is dehazed by using the improved dark channel prior,and then fused with the high-frequency image.Furthermore,we optimize the atmospheric light and transmit-tance estimation method to obtain a defogging effect with richer details and stronger contrast.The proposed algorithm is com-pared with the existing advanced algorithms.Experiment results show that the proposed algorithm has better performance in comparison with the state-of-the-art algorithms.展开更多
Epistasis is a ubiquitous phenomenon in genetics,and is considered to be one of main factors in current efforts to unveil missing heritability of complex diseases.Simulation data is crucial for evaluating epistasis de...Epistasis is a ubiquitous phenomenon in genetics,and is considered to be one of main factors in current efforts to unveil missing heritability of complex diseases.Simulation data is crucial for evaluating epistasis detection tools in genome-wide association studies(GWAS).Existing simulators normally suffer from two limitations:absence of support for high-order epistasis models containing multiple single nucleotide polymorphisms(SNPs),and inability to generate simulation SNP data independently.In this study,we proposed a simulator SimHOEPI,which is capable of calculating penetrance tables of high-order epistasis models depending on either prevalence or heritability,and uses a resampling strategy to generate simulation data independently.Highlights of SimHOEPI are the preservation of realistic minor allele frequencies in sampling data,the accurate calculation and embedding of high-order epistasis models,and acceptable simulation time.A series of experiments were carried out to verify these properties from different aspects.Experimental results show that SimHOEPI can generate simulation SNP data independently with high-order epistasis models,implying that it might be an alternative simulator for GWAS.展开更多
Top-down strategy has been widely applied for synthesis of metal single atom catalysts(SACs)via converting metal nanoparticles or bulk metals into atomically dispersed species.Here,we report a simple electrochemical a...Top-down strategy has been widely applied for synthesis of metal single atom catalysts(SACs)via converting metal nanoparticles or bulk metals into atomically dispersed species.Here,we report a simple electrochemical atomic migration strategy for top-down synthesis of SACs via a facile cathodic corrosion process without involving high temperature or harsh atmosphere.Atoms of metal nanoparticles on cathode are firstly disbanded under high negative voltage,and emitted into the electrolyte in the form of atomic metal anions in Zintl phase.The escaped atomically dispersed metal species are then oxidized by water molecules and captured by the defects on the pre-added nitrogen doped carbon carriers in the electrolyte.This cathodic corrosion strategy is confirmed to be suitable for scalable synthesis of kinds of metal SACs(e.g.,Pt,Pd,and Ir)on doped carbon materials.Typically,the as-prepared nitrogen doped carbon powder supported Pt SACs exhibit superior catalytic activity toward hydrogen evolution reaction(HER)with a low overpotential of 0.024 V at 10 mA·cm^(−2)and a low Tafel slope of 29.7 mV·dec^(−1)as well as a long-term durability.展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province,China (BK20210887)the Jiangsu Provincial Double Innovation Program,China (JSSCB20210984)+1 种基金the Natural Science Fund for Colleges and Universities of Jiangsu Province,China (21KJB450003)the Jiangsu University of Science and Technology Doctoral Research Start-up Fund,China (120200012)。
文摘Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金supported by the National Defense Technology Advance Research Project of China(004040204).
文摘Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages of the two-dimensional variational mode decomposition(2DVMD)algorithm and dark channel prior.The original hazy image is adaptively decom-posed into low-frequency and high-frequency images according to the image frequency band by using the 2DVMD algorithm.The low-frequency image is dehazed by using the improved dark channel prior,and then fused with the high-frequency image.Furthermore,we optimize the atmospheric light and transmit-tance estimation method to obtain a defogging effect with richer details and stronger contrast.The proposed algorithm is com-pared with the existing advanced algorithms.Experiment results show that the proposed algorithm has better performance in comparison with the state-of-the-art algorithms.
基金This work was supported by the National Natural Science Foundation of China(Nos.61972226 and 62172254).
文摘Epistasis is a ubiquitous phenomenon in genetics,and is considered to be one of main factors in current efforts to unveil missing heritability of complex diseases.Simulation data is crucial for evaluating epistasis detection tools in genome-wide association studies(GWAS).Existing simulators normally suffer from two limitations:absence of support for high-order epistasis models containing multiple single nucleotide polymorphisms(SNPs),and inability to generate simulation SNP data independently.In this study,we proposed a simulator SimHOEPI,which is capable of calculating penetrance tables of high-order epistasis models depending on either prevalence or heritability,and uses a resampling strategy to generate simulation data independently.Highlights of SimHOEPI are the preservation of realistic minor allele frequencies in sampling data,the accurate calculation and embedding of high-order epistasis models,and acceptable simulation time.A series of experiments were carried out to verify these properties from different aspects.Experimental results show that SimHOEPI can generate simulation SNP data independently with high-order epistasis models,implying that it might be an alternative simulator for GWAS.
基金National MCF Energy Research and Development Program(No.2022YFE03170004)National Natural Science Foundation of China(Nos.22109146 and 22309169)Foundation from Institute of Materials CAEP(Nos.TP03201802 and JBNY0602).
文摘Top-down strategy has been widely applied for synthesis of metal single atom catalysts(SACs)via converting metal nanoparticles or bulk metals into atomically dispersed species.Here,we report a simple electrochemical atomic migration strategy for top-down synthesis of SACs via a facile cathodic corrosion process without involving high temperature or harsh atmosphere.Atoms of metal nanoparticles on cathode are firstly disbanded under high negative voltage,and emitted into the electrolyte in the form of atomic metal anions in Zintl phase.The escaped atomically dispersed metal species are then oxidized by water molecules and captured by the defects on the pre-added nitrogen doped carbon carriers in the electrolyte.This cathodic corrosion strategy is confirmed to be suitable for scalable synthesis of kinds of metal SACs(e.g.,Pt,Pd,and Ir)on doped carbon materials.Typically,the as-prepared nitrogen doped carbon powder supported Pt SACs exhibit superior catalytic activity toward hydrogen evolution reaction(HER)with a low overpotential of 0.024 V at 10 mA·cm^(−2)and a low Tafel slope of 29.7 mV·dec^(−1)as well as a long-term durability.