A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultra...A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.展开更多
This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) ...This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.展开更多
YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstru...The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.展开更多
The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reacto...The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reactor.The results of this study show that the rate of coking on the supported Ni-catalysts depends main-ly on the percentage content of the large size fraction(25-70nm)of Ni-crystallites,and that the dispersion ofNi-crystallites and the anticoking property of the Ni/α-Al<sub>2</sub>O<sub>3</sub> catalysts were promoted obviously by theLa<sub>2</sub>O<sub>3</sub>-modification method.The variation of the Ni-CSD and the anticoking property of the catalysts were fur-ther tested through different periods of hydrothermal treatment.It is found that the content of the largeNi-crystal size fraction and the coking rate pass correspondingly through a maximum.展开更多
The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investig...The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.展开更多
β-Ga2O3: Cr single crystals were grown by floating zone technique. Absorption spectra and fluorescence spectra were measured at room temperature. The values of field splitting parameter Dq and Racah parameter B were ...β-Ga2O3: Cr single crystals were grown by floating zone technique. Absorption spectra and fluorescence spectra were measured at room temperature. The values of field splitting parameter Dq and Racah parameter B were obtained by the peak values of absorption spectra. The value 10Dq/B=23.14 manifests that in β-Ga2O3 crystals Cr3+ ions are influenced by low energy crystal field. After high temperature annealing in air, the Cr3+ intrinsic emission was enhanced and the green lumines-cence disappeared. The strong and broad 691 nm emission was obtained at 420 nm excitation due to the electron transition occurred from 4T2 to 4A2. The studies manifest that the β-Ga2O3 crystals have the potential application for tunable laser.展开更多
Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prep...Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prepare eutectic single crystal ceramic with large size(30 mm×125 mm).A highly oriented and unique texture of Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramic is formed via the 112¯0Al_(2)O_(3) single crystal seed induction based on crystallographic orientation tailoring.The orientations of Al_(2)O_(3)/YAG eutectic are more strictly constrained by single crystal seed induction on the basis of the minimum interface energy principle,resulting in a defined single orientation relationship along the solidification direction.In particular,the single crystallographic orientation can be obtained in a short competitive solidification distance under the influence of epitaxial solidification from single crystal seed.Therefore,it has been confirmed that the orientations of 112¯0Al_(2)O_(3) and 111YAG are preferentially stabilized with the minimum under-cooling during directional solidification.Crystallographic orientation disturbances and instabilities due to polycrystalline crystal seed are avoided.Finally,the successful texture control inducted by 112¯0Al_(2)O_(3) single crystal seed can provide a promising orientation design pathway for faced oxide eutectic solidification.展开更多
Mesoporous single crystal-like Y2O3 nanocubes have been prepared through a coordination-based self- assembly process. Firstly, a uniform nanocube-like Y-lysine precursor was simply prepared with hydrothermal treatment...Mesoporous single crystal-like Y2O3 nanocubes have been prepared through a coordination-based self- assembly process. Firstly, a uniform nanocube-like Y-lysine precursor was simply prepared with hydrothermal treatment. After the simple thermal treatment process, nanocube-shaped yttrium oxides with the morphology inherited from the Y-lysine precursor were successfully prepared. The phase, morphology, size and crystalline structure were well characterized by XRD, SEM and TEM. N2 adsorption-desorption demonstrates the mesoporous characteristics of the Y2O3 nanocubes, showing a relatively high surface area of 60 m^2/g.展开更多
Abstract: Undoped and doped KC1 single crystals have been successfully elaborated via the Czochralski (Cz) method. The effects of dopant Sb2O3 nanocrystals on structural and optical properties were investigated by ...Abstract: Undoped and doped KC1 single crystals have been successfully elaborated via the Czochralski (Cz) method. The effects of dopant Sb2O3 nanocrystals on structural and optical properties were investigated by a number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disper- sive X-ray (EDAX) analysis, UV-visible and photoluminescence (PL) spectrophotometers. An XRD pattern of KCI:Sb2O3 reveals that the Sb2O3 nanocrystals are in the well-crystalline orthorhombic phase. The broadening of diffraction peaks indicated the presence of a Sb2O3 semiconductor in the nanometer size regime. The shift of ab- sorption and PL peaks is observed near 334 nm and 360 nm respectively due to the quantum confinement effect in Sb2O3 nanocrystals. Particle sizes calculated from XRD studies agree fairly well with those estimated from optical studies. An SEM image of the surface KCI:Sb2O3 single crystal shows large quasi-spherical of Sb2O3 crystallites scattered on the surface. The elemental analysis from EDAX demonstrates that the KCI:Sb2O3 single crystal is slightly rich in oxygen and a source of excessive quantities of oxygen is discussed.展开更多
Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal c...Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.展开更多
An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure -y-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure -y-alumi...An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure -y-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure -y-alumina has been investigated. The nanostructure γ-alumina was promoted with lanthanum to obtain better performance of catalyst and 15 wt% cobalt loading was the basis of our investigation. Fischer- Tropsch synthesis was performed in a fixed bed reactor under different reaction conditions (220-240 ℃, 15-25 bar, H2/CO ratio of 2, GHSV of 900-1400) in order to study the effects of temperature, pressure and gas hourly space velocity (GHSV) changes on hydrocarbon selec- tivity and catalyst activity. The catalysts were extensively characterized by different methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma (ICP), hydrogen (H2) chemisorption and temperature-programmed reduction (TPR). The results showed that the yield of hybrid supported catalyst (55.4%) is higher than that of nanos- tructure -y-alumina supported catalyst (55.0%) and lower than that of SWNTs supported cobalt catalyst (71.0%). The hybrid supported catalyst showed higher reduction degree and dispersion of cobalt particles. The temperature, pressure and GHSV effects on hybrid supported catalyst were studied and results showed that higher pressure favors the chain growth and temperature increase leads to the increases in methane selec- tivity and CO conversion. Higher hydrocarbon selectivity and CO conversion showed positive relationship with increasing GHSV while lower hydrocarbon selectivity diminishes.展开更多
Hierarchical urchin-like gamma-Al2O3 hollow microspheres were prepared by a hydrothermal method followed by a calcination process using Al(NO3)(3)center dot 9H(2)O as aluminum source, NH3 center dot H2O as precipitati...Hierarchical urchin-like gamma-Al2O3 hollow microspheres were prepared by a hydrothermal method followed by a calcination process using Al(NO3)(3)center dot 9H(2)O as aluminum source, NH3 center dot H2O as precipitating agent, and P123 as structure-directing agent (SDA). The obtained samples were investigated using X-ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and N-2 adsorption/desorption. The influences of P123 concentration, acidic condition, and hydrothermal time on the morphology of product were discussed. P123 has a great influence on ruling the oriented attachment of nanowires and stabilizing the superstructure in the self-assembly process. The 3D urchin-like hollow microspheres have a surface area of 210.2 m(2)/g and the average pore size is 11.42 nm, which have widely potential application such as catalyst, adsorption, and separation.展开更多
基金Project supported by National Key Research and Development Plan of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the National Natural Science Foundation of China(Grant Nos.61574026,11675198,61774072,and 11405017)+2 种基金the Natural Science Foundation of Liaoning Province,China(Grant Nos.201602453 and 201602176)China Postdoctoral Science Foundation Funded Project(Grant No.2016M591434)the Dalian Science and Technology Innovation Fund(Grant No.2018J12GX060)
文摘A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
基金supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)the Key Basic Research Project of Science and Technology of Shanghai (Grant No. 09JC1406500)
文摘This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.
基金This project was sponsored by "863" Project (No. 2003AA322020)
文摘The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.
文摘The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reactor.The results of this study show that the rate of coking on the supported Ni-catalysts depends main-ly on the percentage content of the large size fraction(25-70nm)of Ni-crystallites,and that the dispersion ofNi-crystallites and the anticoking property of the Ni/α-Al<sub>2</sub>O<sub>3</sub> catalysts were promoted obviously by theLa<sub>2</sub>O<sub>3</sub>-modification method.The variation of the Ni-CSD and the anticoking property of the catalysts were fur-ther tested through different periods of hydrothermal treatment.It is found that the content of the largeNi-crystal size fraction and the coking rate pass correspondingly through a maximum.
基金part of the study under the "Human Resource Development Center for Economic Region Leading Industry" Projectsupported by the Ministry of Education,Science & Technology(MEST)by the National Research Foundation of Korea(NRF)
文摘The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.
基金the National Natural Science Foundation of China (Grant Nos. 50472032 and 50672105) the Hundred Talents Program of the Chinese Academy of Sciences
文摘β-Ga2O3: Cr single crystals were grown by floating zone technique. Absorption spectra and fluorescence spectra were measured at room temperature. The values of field splitting parameter Dq and Racah parameter B were obtained by the peak values of absorption spectra. The value 10Dq/B=23.14 manifests that in β-Ga2O3 crystals Cr3+ ions are influenced by low energy crystal field. After high temperature annealing in air, the Cr3+ intrinsic emission was enhanced and the green lumines-cence disappeared. The strong and broad 691 nm emission was obtained at 420 nm excitation due to the electron transition occurred from 4T2 to 4A2. The studies manifest that the β-Ga2O3 crystals have the potential application for tunable laser.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376 and 51822405)the Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+4 种基金the Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(No.2020GXLH-Z-024)The Youth Innovation Team of Shaanxi Universities,the Key R&D Program of Shaanxi Province(No.2019ZDLGY 04-04)the Fundamental Research Funds for the Central Universities(No.D5000210902)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056,CX2021066 and CX2022033),China.
文摘Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prepare eutectic single crystal ceramic with large size(30 mm×125 mm).A highly oriented and unique texture of Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramic is formed via the 112¯0Al_(2)O_(3) single crystal seed induction based on crystallographic orientation tailoring.The orientations of Al_(2)O_(3)/YAG eutectic are more strictly constrained by single crystal seed induction on the basis of the minimum interface energy principle,resulting in a defined single orientation relationship along the solidification direction.In particular,the single crystallographic orientation can be obtained in a short competitive solidification distance under the influence of epitaxial solidification from single crystal seed.Therefore,it has been confirmed that the orientations of 112¯0Al_(2)O_(3) and 111YAG are preferentially stabilized with the minimum under-cooling during directional solidification.Crystallographic orientation disturbances and instabilities due to polycrystalline crystal seed are avoided.Finally,the successful texture control inducted by 112¯0Al_(2)O_(3) single crystal seed can provide a promising orientation design pathway for faced oxide eutectic solidification.
基金supported by NSFC(No.21373116)Tianjin Natural Science Research Fund(No.13JCYBJC18300)+1 种基金RFDP(No. 20120031110005)MOE Innovation Team(No.IRT13022) of China
文摘Mesoporous single crystal-like Y2O3 nanocubes have been prepared through a coordination-based self- assembly process. Firstly, a uniform nanocube-like Y-lysine precursor was simply prepared with hydrothermal treatment. After the simple thermal treatment process, nanocube-shaped yttrium oxides with the morphology inherited from the Y-lysine precursor were successfully prepared. The phase, morphology, size and crystalline structure were well characterized by XRD, SEM and TEM. N2 adsorption-desorption demonstrates the mesoporous characteristics of the Y2O3 nanocubes, showing a relatively high surface area of 60 m^2/g.
基金Project supported by the Crystallography Laboratory of the University of Constantine,Algeria
文摘Abstract: Undoped and doped KC1 single crystals have been successfully elaborated via the Czochralski (Cz) method. The effects of dopant Sb2O3 nanocrystals on structural and optical properties were investigated by a number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disper- sive X-ray (EDAX) analysis, UV-visible and photoluminescence (PL) spectrophotometers. An XRD pattern of KCI:Sb2O3 reveals that the Sb2O3 nanocrystals are in the well-crystalline orthorhombic phase. The broadening of diffraction peaks indicated the presence of a Sb2O3 semiconductor in the nanometer size regime. The shift of ab- sorption and PL peaks is observed near 334 nm and 360 nm respectively due to the quantum confinement effect in Sb2O3 nanocrystals. Particle sizes calculated from XRD studies agree fairly well with those estimated from optical studies. An SEM image of the surface KCI:Sb2O3 single crystal shows large quasi-spherical of Sb2O3 crystallites scattered on the surface. The elemental analysis from EDAX demonstrates that the KCI:Sb2O3 single crystal is slightly rich in oxygen and a source of excessive quantities of oxygen is discussed.
基金supported by Jilin Province Science and Technology Development Project(Grant No.21521092JH)
文摘Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.
基金supported by the Iran National Science Foundation (INSF) under the contract number 87040961the Iranian Nano Technology Initiative Council
文摘An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure -y-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure -y-alumina has been investigated. The nanostructure γ-alumina was promoted with lanthanum to obtain better performance of catalyst and 15 wt% cobalt loading was the basis of our investigation. Fischer- Tropsch synthesis was performed in a fixed bed reactor under different reaction conditions (220-240 ℃, 15-25 bar, H2/CO ratio of 2, GHSV of 900-1400) in order to study the effects of temperature, pressure and gas hourly space velocity (GHSV) changes on hydrocarbon selec- tivity and catalyst activity. The catalysts were extensively characterized by different methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma (ICP), hydrogen (H2) chemisorption and temperature-programmed reduction (TPR). The results showed that the yield of hybrid supported catalyst (55.4%) is higher than that of nanos- tructure -y-alumina supported catalyst (55.0%) and lower than that of SWNTs supported cobalt catalyst (71.0%). The hybrid supported catalyst showed higher reduction degree and dispersion of cobalt particles. The temperature, pressure and GHSV effects on hybrid supported catalyst were studied and results showed that higher pressure favors the chain growth and temperature increase leads to the increases in methane selec- tivity and CO conversion. Higher hydrocarbon selectivity and CO conversion showed positive relationship with increasing GHSV while lower hydrocarbon selectivity diminishes.
基金This work was financially supported by National Natural Science Foundation of China,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology)
文摘Hierarchical urchin-like gamma-Al2O3 hollow microspheres were prepared by a hydrothermal method followed by a calcination process using Al(NO3)(3)center dot 9H(2)O as aluminum source, NH3 center dot H2O as precipitating agent, and P123 as structure-directing agent (SDA). The obtained samples were investigated using X-ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and N-2 adsorption/desorption. The influences of P123 concentration, acidic condition, and hydrothermal time on the morphology of product were discussed. P123 has a great influence on ruling the oriented attachment of nanowires and stabilizing the superstructure in the self-assembly process. The 3D urchin-like hollow microspheres have a surface area of 210.2 m(2)/g and the average pore size is 11.42 nm, which have widely potential application such as catalyst, adsorption, and separation.