The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,r...Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,respectively.Single-bit upset and multicell upset events were observed,and an uppermost number of nine upset cells were discovered in the 90 MeV proton irradiation test.The results indicate that the SEE sensitivities of the 28 nm SoC to the 90 MeV and 70 MeV protons were similar.Cosmic Ray Effects on Micro-Electronics Monte Carlo simulations were analyzed,and it demonstrates that protons can induce effects in a 28 nm SoC if their energies are greater than 1.4 MeV and that the lowest corresponding linear energy transfer was 0.142 MeV cm^2 mg^-1.The similarities and discrepancies of the SEEs induced by the 90 MeV and 70 MeV protons were analyzed.展开更多
Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the...Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the threshold linear energy transfer of a tested device is a critical parameter for determining the maximum proton energy. The inner mechanisms are further revealed. Highenergy deposition events(>10 MeV) in sensitive volumes are attributed to the interaction between protons and the tungsten vias in the metallization layers.展开更多
We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost indep...We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost independent of proton incident angle. However, the proportion of SET events with long duration and high integral charge collection grows significantly with the increasing angle. Monte Carlo simulations demonstrate that the integral cross section of proton incident events with high ionizing energy deposition in the sensitive volume tends to be higher at larger incident angles, which is associated with the angular distribution of proton-induced secondary particles and the geometry of sensitive volume.展开更多
We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo sim...We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo simulation tool named PRESTAGE to calculate the proton SEE cross-sections.PRESTAGE is based on the particle transport toolkit Geant4.It adopts a location-dependent strategy to derive the SEE sensitivity of the device from heavy-ion test data,which have been measured at the HI-13 tandem accelerator of the China Institute of Atomic Energy and the heavy-ion research facility in Lanzhou.The AP-8,SOLPRO,and August 1972 worst-case models are used to predict the average and peak proton fluxes on the DAMPE orbit.Calculation results show that the averaged proton SEE error rate for the VATA160 chip is approximately 2.17×10^(-5)/device/day.Worst-case error rates for the Van Allen belts and solar energetic particle events are 1-3 orders of magnitude higher than the averaged error rate.展开更多
This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing ha...This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer(LET) and proton energy has been measured. The main study conclusions are:(1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size(600 nm), and threshold LET is about 0.06 Me V mg/cm^2;(2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model;(3) on-orbit soft error rate(SER) prediction showed, on GEO orbit,proton induced SERs calculated by the heavy ion derived model are 4–5 times larger than those calculated by proton test data.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575138,11835006,11690040,and 11690043)
文摘Single-event effects(SEEs)induced by mediumenergy protons in a 28 nm system-on-chip(SoC)were investigated at the China Institute of Atomic Energy.An on-chip memory block was irradiated with 90 MeV and 70 MeV protons,respectively.Single-bit upset and multicell upset events were observed,and an uppermost number of nine upset cells were discovered in the 90 MeV proton irradiation test.The results indicate that the SEE sensitivities of the 28 nm SoC to the 90 MeV and 70 MeV protons were similar.Cosmic Ray Effects on Micro-Electronics Monte Carlo simulations were analyzed,and it demonstrates that protons can induce effects in a 28 nm SoC if their energies are greater than 1.4 MeV and that the lowest corresponding linear energy transfer was 0.142 MeV cm^2 mg^-1.The similarities and discrepancies of the SEEs induced by the 90 MeV and 70 MeV protons were analyzed.
基金supported by the National Natural Science Foundation of China(No.11505033)the Science and Technology Research Project of Guangdong,China(Nos.2015B090901048 and 2017B090901068)the Science and Technology Plan Project of Guangzhou,China(No.201707010186)
文摘Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the threshold linear energy transfer of a tested device is a critical parameter for determining the maximum proton energy. The inner mechanisms are further revealed. Highenergy deposition events(>10 MeV) in sensitive volumes are attributed to the interaction between protons and the tungsten vias in the metallization layers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775167 and 12105252)the Natural Science Foundation of Chongqing,China(Grant No.cstc2021jcyj-bsh0246)。
文摘We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost independent of proton incident angle. However, the proportion of SET events with long duration and high integral charge collection grows significantly with the increasing angle. Monte Carlo simulations demonstrate that the integral cross section of proton incident events with high ionizing energy deposition in the sensitive volume tends to be higher at larger incident angles, which is associated with the angular distribution of proton-induced secondary particles and the geometry of sensitive volume.
基金supported by the National Natural Science Foundation of China(Nos.11179003,10975164,10805062,and 11005134)
文摘We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo simulation tool named PRESTAGE to calculate the proton SEE cross-sections.PRESTAGE is based on the particle transport toolkit Geant4.It adopts a location-dependent strategy to derive the SEE sensitivity of the device from heavy-ion test data,which have been measured at the HI-13 tandem accelerator of the China Institute of Atomic Energy and the heavy-ion research facility in Lanzhou.The AP-8,SOLPRO,and August 1972 worst-case models are used to predict the average and peak proton fluxes on the DAMPE orbit.Calculation results show that the averaged proton SEE error rate for the VATA160 chip is approximately 2.17×10^(-5)/device/day.Worst-case error rates for the Van Allen belts and solar energetic particle events are 1-3 orders of magnitude higher than the averaged error rate.
文摘This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer(LET) and proton energy has been measured. The main study conclusions are:(1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size(600 nm), and threshold LET is about 0.06 Me V mg/cm^2;(2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model;(3) on-orbit soft error rate(SER) prediction showed, on GEO orbit,proton induced SERs calculated by the heavy ion derived model are 4–5 times larger than those calculated by proton test data.