Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability ...Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.展开更多
Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is ...Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.展开更多
Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will...Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance.展开更多
The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the ...The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).展开更多
Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of l...Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of low-concentration single molecules,respectively.Lateral dif-fusion coefficients measured by FRAP and SPT techniques for the same biomolecule on cell membrane have exhibited inconsistent values across laboratories and platforms with larger dif-fusion coefficient determined by FRAP,but the sources of the inconsistency have not been investigated thoroughly.Here,we designed an image-based FRAP-SPT system and made a direct comparison between FRAP and SPT for diffusion coefficient of submicron particles with known theoretical values derived from Stokes-Einstein equation in aqueous solution.The combined iFRAP-SPT technique allowed us to measure the diffusion coefficient of the same fluorescent particle by utilizing both techniques in a single platform and to scrutinize inherent errors and artifacts of FRAP.Our results reveal that diffusion coefficient overestimated by FRAP is caused by inaccurate estimation of the bleaching spot size and can be corrected by simple image analysis.Our iFRAP-SPT technique can be potentially used for not only cellular membrane dynamics but also for quantitative analysis of the spatiotemporal distribution of the solutes in small scale analytical devices.展开更多
To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB...To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.展开更多
Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human prior...Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human priorknowledge;thus, they can be sensitive to predefined hyperparameters and failto fit the spatial and scale variations of samples. In this study, we first developa novel dynamic label assignment (DLA) module to handle the diverse datadistributions and adaptively distinguish the foreground from the backgroundbased on the statistical characteristics of the target in visual object tracking.The core of DLA module is a two-step selection mechanism. The first stepselects candidate samples according to the Euclidean distance between trainingsamples and ground truth, and the second step selects positive/negativesamples based on the mean and standard deviation of candidate samples.The proposed approach is general-purpose and can be easily integrated intoanchor-based and anchor-free trackers for optimal sample-label matching.According to extensive experimental findings, Siamese-based trackers withDLA modules can refine target locations and outperformbaseline trackers onOTB100, VOT2019, UAV123 and LaSOT. Particularly, DLA-SiamRPN++improves SiamRPN++ by 1% AUC and DLA-SiamCAR improves Siam-CAR by 2.5% AUC on OTB100. Furthermore, hyper-parameters analysisexperiments show that DLA module hardly increases spatio-temporal complexity,the proposed approach maintains the same speed as the originaltracker without additional overhead.展开更多
Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of ...Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.展开更多
In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with som...In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.展开更多
In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for t...In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.展开更多
Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbi...Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily.展开更多
According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed...According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed that the design problems of correcting deviation of wire movement track in narrow gap submerged arc welding process must be noticed in order to obtain the sound welding result.展开更多
Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantu...Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1) QD blinking and bleaching statistics, 2) the use of QDs in high speed single particle tracking with a special focus on how to design the biofunctional coatings of QDs which enable specific targeting to single proteins or lipids of interest, 3) a hybrid lipid-DNA analogue binding QDs which allows for tracking single lipids in lipid bilayers, 4) two-photon fluorescence correlation spectroscopy of QDs and 5) optical trapping and excitation of single QDs. In all of these applications, the focus is on the single particle sensitivity level of QDs. The high applicability of QDs in live cell imaging experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research.展开更多
This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. Th...This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. The energy storage elements incorporated in the SEPIC converter possess parasitic resistances. Although ideal components significantly simplifies model development, but neglecting the parasitic effects in models may sometimes lead to failure in predicting first scale stability and actual performance. Therefore, the effects of parasitics have been taken into consideration for improving the model accuracy, stability, robustness and dynamic performance analysis of the converter. Detail mathematical model of SEPIC converter including inductive parasitic has been developed. The performance of the converter in tracking MPP at different irradiance levels has been analyzed for variation in parasitic resistance. The converter efficiency has been found above 83% for insolation level of 600 W/m2 when the parasitic resistance in the energy storage element has been ignored. However, as the parasitic resistance of both of the inductor has increased to 1 ohm, a fraction of the power managed by the converter has dissipated;as a result the efficiency of the converter has reduced to 78% for the same insolation profile. Although the increasing value of the parasitic has assisted the converter to converge quickly to reach the maximum power point. Furthermore it has also been observed that the peak to peak load current ripple is reduced. The obtained simulation results have validated the competent of the MPPT converter model.展开更多
We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based ...We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single- tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles.展开更多
Background: Video recording of cells offers a straightforward way to gainvaluable information from their response to treatments. An indispensable stepin obtaining such information involves tracking individual cells fr...Background: Video recording of cells offers a straightforward way to gainvaluable information from their response to treatments. An indispensable stepin obtaining such information involves tracking individual cells from therecorded data. A subsequent step is reducing such data to represent essentialbiological information. This can help to compare various single‐cell trackingdata yielding a novel source of information. The vast array of potential datasources highlights the significance of methodologies prioritizing simplicity,robustness, transparency, affordability, sensor independence, and freedomfrom reliance on specific software or online services.Methods: The provided data presents single‐cell tracking of clonal (A549)cells as they grow in two‐dimensional (2D) monolayers over 94 hours,spanning several cell cycles. The cells are exposed to three differentconcentrations of yessotoxin (YTX). The data treatments showcase theparametrization of population growth curves, as well as other statisticaldescriptions. These include the temporal development of cell speed in familytrees with and without cell death, correlations between sister cells, single‐cellaverage displacements, and the study of clustering tendencies.Results: Various statistics obtained from single‐cell tracking reveal patternssuitable for data compression and parametrization. These statistics encompassessential aspects such as cell division, movements, and mutual informationbetween sister cells.Conclusion: This work presents practical examples that highlight theabundant potential information within large sets of single‐cell tracking data.Data reduction is crucial in the process of acquiring such information whichcan be relevant for phenotypic drug discovery and therapeutics, extendingbeyond standardized procedures. Conducting meaningful big data analysistypically necessitates a substantial amount of data, which can stem fromstandalone case studies as an initial foundation.展开更多
Center point localization is a major factor affecting the performance of 3D single object tracking.Point clouds themselves are a set of discrete points on the local surface of an object,and there is also a lot of nois...Center point localization is a major factor affecting the performance of 3D single object tracking.Point clouds themselves are a set of discrete points on the local surface of an object,and there is also a lot of noise in the labeling.Therefore,directly regressing the center coordinates is not very reasonable.Existing methods usually use volumetric-based,point-based,and view-based methods,with a relatively single modality.In addition,the sampling strategies commonly used usually result in the loss of object information,and holistic and detailed information is beneficial for object localization.To address these challenges,we propose a novel Multi-view unsupervised center Uncertainty 3D single object Tracker(MUT).MUT models the potential uncertainty of center coordinates localization using an unsupervised manner,allowing the model to learn the true distribution.By projecting point clouds,MUT can obtain multi-view depth map features,realize efficient knowledge transfer from 2D to 3D,and provide another modality information for the tracker.We also propose a former attraction probability sampling strategy that preserves object information.By using both holistic and detailed descriptors of point clouds,the tracker can have a more comprehensive understanding of the tracking environment.Experimental results show that the proposed MUT network outperforms the baseline models on the KITTI dataset by 0.8%and 0.6%in precision and success rate,respectively,and on the NuScenes dataset by 1.4%,and 6.1%in precision and success rate,respectively.The code is made available at https://github.com/abchears/MUT.git.展开更多
文摘Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.
文摘Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.
基金Supported by the National Natural Science Foundation of China(No.61502312)the Fundamental Research Funds for the Central Universities(No.2017BQ024)+1 种基金the Natural Science Foundation of Guangdong Province(No.2017A030310428)the Science and Technology Programm of Guangzhou(No.201806020075,20180210025)
文摘Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance.
基金Project(ICAST No.11305054) supported by the NEDO of Japan Subproject (5133301ZT4) supported by 973 Program Project (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).
基金This work was supported by grants from the National Research Foundation(NRF)(NRF2019R1A2C2088973)funded by the Ministry of Educationthe Korea Evaluation Institute of Industrial Technology(KEIT)(20011377)funded by the Ministry of Trade,Industry&Energy,Republic of Korea.
文摘Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of low-concentration single molecules,respectively.Lateral dif-fusion coefficients measured by FRAP and SPT techniques for the same biomolecule on cell membrane have exhibited inconsistent values across laboratories and platforms with larger dif-fusion coefficient determined by FRAP,but the sources of the inconsistency have not been investigated thoroughly.Here,we designed an image-based FRAP-SPT system and made a direct comparison between FRAP and SPT for diffusion coefficient of submicron particles with known theoretical values derived from Stokes-Einstein equation in aqueous solution.The combined iFRAP-SPT technique allowed us to measure the diffusion coefficient of the same fluorescent particle by utilizing both techniques in a single platform and to scrutinize inherent errors and artifacts of FRAP.Our results reveal that diffusion coefficient overestimated by FRAP is caused by inaccurate estimation of the bleaching spot size and can be corrected by simple image analysis.Our iFRAP-SPT technique can be potentially used for not only cellular membrane dynamics but also for quantitative analysis of the spatiotemporal distribution of the solutes in small scale analytical devices.
基金supported by the National Natural Science Foundation of China (60572148 60702060)
文摘To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.
基金support of the National Natural Science Foundation of China (Grant No.52127809,author Z.W,http://www.nsfc.gov.cn/No.51625501,author Z.W,http://www.nsfc.gov.cn/)is greatly appreciated.
文摘Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human priorknowledge;thus, they can be sensitive to predefined hyperparameters and failto fit the spatial and scale variations of samples. In this study, we first developa novel dynamic label assignment (DLA) module to handle the diverse datadistributions and adaptively distinguish the foreground from the backgroundbased on the statistical characteristics of the target in visual object tracking.The core of DLA module is a two-step selection mechanism. The first stepselects candidate samples according to the Euclidean distance between trainingsamples and ground truth, and the second step selects positive/negativesamples based on the mean and standard deviation of candidate samples.The proposed approach is general-purpose and can be easily integrated intoanchor-based and anchor-free trackers for optimal sample-label matching.According to extensive experimental findings, Siamese-based trackers withDLA modules can refine target locations and outperformbaseline trackers onOTB100, VOT2019, UAV123 and LaSOT. Particularly, DLA-SiamRPN++improves SiamRPN++ by 1% AUC and DLA-SiamCAR improves Siam-CAR by 2.5% AUC on OTB100. Furthermore, hyper-parameters analysisexperiments show that DLA module hardly increases spatio-temporal complexity,the proposed approach maintains the same speed as the originaltracker without additional overhead.
基金Project(JX2004J0170) supported by the Foundation of Beijing Jiaotong University, China
文摘Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09Z240)the National Deep-Sea Technology Project of Development and Re-search(Grant No.DYXM-115-04-02-01)
文摘In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.
基金This work was supported in part by the Beijing Natural Science Foundation(L191004)the National Natural Science Foundation of China under No.61720106007 and No.61872047+1 种基金the Beijing Nova Program under No.Z201100006820124the Funds for Cre ative Research Groups of China under No.61921003,and the 111 Project(B18008).
文摘In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.
基金financially supported by the National Natural Science Foundation of China(Grant No.61673260)。
文摘Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily.
文摘According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed that the design problems of correcting deviation of wire movement track in narrow gap submerged arc welding process must be noticed in order to obtain the sound welding result.
文摘Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1) QD blinking and bleaching statistics, 2) the use of QDs in high speed single particle tracking with a special focus on how to design the biofunctional coatings of QDs which enable specific targeting to single proteins or lipids of interest, 3) a hybrid lipid-DNA analogue binding QDs which allows for tracking single lipids in lipid bilayers, 4) two-photon fluorescence correlation spectroscopy of QDs and 5) optical trapping and excitation of single QDs. In all of these applications, the focus is on the single particle sensitivity level of QDs. The high applicability of QDs in live cell imaging experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research.
文摘This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. The energy storage elements incorporated in the SEPIC converter possess parasitic resistances. Although ideal components significantly simplifies model development, but neglecting the parasitic effects in models may sometimes lead to failure in predicting first scale stability and actual performance. Therefore, the effects of parasitics have been taken into consideration for improving the model accuracy, stability, robustness and dynamic performance analysis of the converter. Detail mathematical model of SEPIC converter including inductive parasitic has been developed. The performance of the converter in tracking MPP at different irradiance levels has been analyzed for variation in parasitic resistance. The converter efficiency has been found above 83% for insolation level of 600 W/m2 when the parasitic resistance in the energy storage element has been ignored. However, as the parasitic resistance of both of the inductor has increased to 1 ohm, a fraction of the power managed by the converter has dissipated;as a result the efficiency of the converter has reduced to 78% for the same insolation profile. Although the increasing value of the parasitic has assisted the converter to converge quickly to reach the maximum power point. Furthermore it has also been observed that the peak to peak load current ripple is reduced. The obtained simulation results have validated the competent of the MPPT converter model.
基金supported by the Science and Technology Commission of the Shanghai Municipality of China,No.10dz2211800,No.10XD1421400the National High Technology Research and Development Program,No.2009AA02Z415the Innovation Program of Shanghai Municipal Education Commission,No.11yz292
文摘We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single- tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles.
文摘Background: Video recording of cells offers a straightforward way to gainvaluable information from their response to treatments. An indispensable stepin obtaining such information involves tracking individual cells from therecorded data. A subsequent step is reducing such data to represent essentialbiological information. This can help to compare various single‐cell trackingdata yielding a novel source of information. The vast array of potential datasources highlights the significance of methodologies prioritizing simplicity,robustness, transparency, affordability, sensor independence, and freedomfrom reliance on specific software or online services.Methods: The provided data presents single‐cell tracking of clonal (A549)cells as they grow in two‐dimensional (2D) monolayers over 94 hours,spanning several cell cycles. The cells are exposed to three differentconcentrations of yessotoxin (YTX). The data treatments showcase theparametrization of population growth curves, as well as other statisticaldescriptions. These include the temporal development of cell speed in familytrees with and without cell death, correlations between sister cells, single‐cellaverage displacements, and the study of clustering tendencies.Results: Various statistics obtained from single‐cell tracking reveal patternssuitable for data compression and parametrization. These statistics encompassessential aspects such as cell division, movements, and mutual informationbetween sister cells.Conclusion: This work presents practical examples that highlight theabundant potential information within large sets of single‐cell tracking data.Data reduction is crucial in the process of acquiring such information whichcan be relevant for phenotypic drug discovery and therapeutics, extendingbeyond standardized procedures. Conducting meaningful big data analysistypically necessitates a substantial amount of data, which can stem fromstandalone case studies as an initial foundation.
文摘Center point localization is a major factor affecting the performance of 3D single object tracking.Point clouds themselves are a set of discrete points on the local surface of an object,and there is also a lot of noise in the labeling.Therefore,directly regressing the center coordinates is not very reasonable.Existing methods usually use volumetric-based,point-based,and view-based methods,with a relatively single modality.In addition,the sampling strategies commonly used usually result in the loss of object information,and holistic and detailed information is beneficial for object localization.To address these challenges,we propose a novel Multi-view unsupervised center Uncertainty 3D single object Tracker(MUT).MUT models the potential uncertainty of center coordinates localization using an unsupervised manner,allowing the model to learn the true distribution.By projecting point clouds,MUT can obtain multi-view depth map features,realize efficient knowledge transfer from 2D to 3D,and provide another modality information for the tracker.We also propose a former attraction probability sampling strategy that preserves object information.By using both holistic and detailed descriptors of point clouds,the tracker can have a more comprehensive understanding of the tracking environment.Experimental results show that the proposed MUT network outperforms the baseline models on the KITTI dataset by 0.8%and 0.6%in precision and success rate,respectively,and on the NuScenes dataset by 1.4%,and 6.1%in precision and success rate,respectively.The code is made available at https://github.com/abchears/MUT.git.