Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m...Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point...Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.展开更多
Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean ...Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.展开更多
=In the advancement of single-isocenter multiple target treatment in the LINAC-based SRS or SRT, the target distance to the isocenter and grouping of multiple targets are the highly concerned and debatable topics in t...=In the advancement of single-isocenter multiple target treatment in the LINAC-based SRS or SRT, the target distance to the isocenter and grouping of multiple targets are the highly concerned and debatable topics in the SRS/SRT field at present. Three failure and success cases of local control in our early practices are presented in this study and it indicated that the target distance to the isocenter directly affects the margin and an inappropriate margin increase the risk of local control failure. The GTV expansion margin should be LINAC-specific and institute-specific. Within the physics and dosimetry scope, the AHARA (as high as reasonably achievable) principle is the first time proposed to the radiation oncology field. Radiobiology and tumor response complexity is beyond this study.展开更多
A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ba...A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.展开更多
文摘Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
文摘Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.
基金supported by the National Key R&D Program of China(2019YFD1001300 and 2019YFD1001303)the Construction of Molecular Database of Faba Bean and Pea and Identification of Maize Germplasm Project,Ministry of Agriculture and Rural Affairs,China(19200030)+3 种基金the Yunnan Key R&D Program,China(202202AE090003)the earmarked fund for China Agriculture Research System(CARS-08)the Crop Germplasm Resources Protection(2130135)the Major Agricultural Science and Technology Program of Chinese Academy of Agricultural Sciences(CAAS-XTCX20190025)。
文摘Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.
文摘=In the advancement of single-isocenter multiple target treatment in the LINAC-based SRS or SRT, the target distance to the isocenter and grouping of multiple targets are the highly concerned and debatable topics in the SRS/SRT field at present. Three failure and success cases of local control in our early practices are presented in this study and it indicated that the target distance to the isocenter directly affects the margin and an inappropriate margin increase the risk of local control failure. The GTV expansion margin should be LINAC-specific and institute-specific. Within the physics and dosimetry scope, the AHARA (as high as reasonably achievable) principle is the first time proposed to the radiation oncology field. Radiobiology and tumor response complexity is beyond this study.
文摘A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.