The multimedia broadcast and multicast services (MBMS) in 3GPP LTE is characterized by multicast broadcast single frequency network (MBSFN) operation. The multicast services are transmitted by single frequency network...The multimedia broadcast and multicast services (MBMS) in 3GPP LTE is characterized by multicast broadcast single frequency network (MBSFN) operation. The multicast services are transmitted by single frequency network (SFN) mode, and the unicast services are delivered with point-to-point (PTP) mode. To minimize the demanded radio resources for multicast services in the LTE, a novel mode switch (MS) between SFN and PTP for multicast services is proposed. MS takes into account PTP mode for multicast services and the switch is based on the handover threshold. To solve the minimization problem, MS adapts the handover threshold with the difference in the demanded radio resources between SFN mode and PTP mode for multicast services. The simulation results show that the proposed MS achieves less demanded radio resources than SFN mode for all the multicast services.展开更多
The single frequency network (SFN) can provide a multimedia broadcast multicast service over a large coverage area. However, the application of SFN is still restricted by a large amount of feedback. Therefore, we prop...The single frequency network (SFN) can provide a multimedia broadcast multicast service over a large coverage area. However, the application of SFN is still restricted by a large amount of feedback. Therefore, we propose a multicast resource allocation scheme based on limited feedback to maximize the total rate while guaranteeing the quality of service (QoS) requirement of real-time services. In this scheme, we design a user feedback control algorithm to effectively reduce feedback load. The algorithm determines to which base stations the users should report channel state information. We then formulate a joint subcarrier and power allocation issue and find that it has high complexity. Hence, we first distribute subcarriers under the assumption of equal power and develop a proportional allocation strategy to achieve a tradeoff between fairness and QoS. Next, an iterative water-filling power allocation is proposed to fully utilize the limited power. To further decrease complexity, a power iterative scheme is introduced. Simulation results show that the proposed scheme significantly improves system performance while reducing 68% of the feedback overhead. In addition, the power iterative strategy is suitable in practice due to low complexity.展开更多
基金Sponsored by the National Key Technology R&D Program of China ( Grant No. 2010ZX03003-001-01)Fundamental Research Funds for the Central Universities
文摘The multimedia broadcast and multicast services (MBMS) in 3GPP LTE is characterized by multicast broadcast single frequency network (MBSFN) operation. The multicast services are transmitted by single frequency network (SFN) mode, and the unicast services are delivered with point-to-point (PTP) mode. To minimize the demanded radio resources for multicast services in the LTE, a novel mode switch (MS) between SFN and PTP for multicast services is proposed. MS takes into account PTP mode for multicast services and the switch is based on the handover threshold. To solve the minimization problem, MS adapts the handover threshold with the difference in the demanded radio resources between SFN mode and PTP mode for multicast services. The simulation results show that the proposed MS achieves less demanded radio resources than SFN mode for all the multicast services.
基金supported by the National Natural Science Foundation of China (Nos. 60972076 and 61072052)the National Science and Technology Major Project, China (No. 2010ZX03003-004-03)
文摘The single frequency network (SFN) can provide a multimedia broadcast multicast service over a large coverage area. However, the application of SFN is still restricted by a large amount of feedback. Therefore, we propose a multicast resource allocation scheme based on limited feedback to maximize the total rate while guaranteeing the quality of service (QoS) requirement of real-time services. In this scheme, we design a user feedback control algorithm to effectively reduce feedback load. The algorithm determines to which base stations the users should report channel state information. We then formulate a joint subcarrier and power allocation issue and find that it has high complexity. Hence, we first distribute subcarriers under the assumption of equal power and develop a proportional allocation strategy to achieve a tradeoff between fairness and QoS. Next, an iterative water-filling power allocation is proposed to fully utilize the limited power. To further decrease complexity, a power iterative scheme is introduced. Simulation results show that the proposed scheme significantly improves system performance while reducing 68% of the feedback overhead. In addition, the power iterative strategy is suitable in practice due to low complexity.