期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Micro/nano Indentation and Single Grit Diamond Grinding Mechanism on Ultra Pure Fused Silica 被引量:10
1
作者 ZHAO Qingliang GUO Bing +1 位作者 STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期963-970,共8页
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ... The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS. 展开更多
关键词 ultra pure fused silica (UPFS) micro/nano indentation single grit diamond grinding ductile material removal subsurface integrity diamond grits wear
下载PDF
Deformation Analysis of Micro/Nano Indentation and Diamond Grinding on Optical Glasses 被引量:2
2
作者 ZHAO Qingliang ZHAO Lingling +2 位作者 GUO Bing STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期411-418,共8页
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at gene... The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses. 展开更多
关键词 optical glasses micro/nano indentation single grit diamond scratching material removal mode surface integrity electrolytic in process dressing (ELID)
下载PDF
ACHIEVING THRESHOLD BARRIER OF 1 nm ROUGHNESS VALUE OF SILICON SURFACE BY DIAMOND TURNING
3
作者 Fang, Fengzhou Venkatesh, V.C. 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第1期7-11,19,共5页
nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron micr... nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron microscope, and stylus surface instrument. The diamond tool sharpness has a considerable influence on the machined surface, therefore a novel technique—brightness modulation for measuring accurately the edge of the cutter is proposed. Mirror surfaces are assessed by another novel technique—a measure of their reflectivity. A third technique, single grit diamond machining is carried out. It supplies a experimental evidence for verifying the obtained high quality turned surfaces. 展开更多
关键词 Mirror surfaces Diamond turning Brittle materials single grit machining
全文增补中
Fiber orientation effects on grinding characteristics and removal mechanism of 2.5D C_(f)/SiC composites
4
作者 Cheng CAO Qinghua SONG +3 位作者 Hui FU Hansong JI Zhanqiang LIU Liping JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期425-441,共17页
Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the mate... Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the material heterogeneity induced by complex removal mechanism.To clarify the effects of fiber orientation on the grinding characteristics and removal mechanism,single grit scratch experiments under different fiber orientations are conducted and a three-phase numerical modelling method for 2.5D C_(f)/SiC composites is proposed.Three fiber cutting modes i.e.,transverse,normal and longitudinal,are defined by fiber orientation and three machining directions i.e.,MA(longitudinal and normal),MB(longitudinal and transverse)and MC(normal and transverse),are selected to investigate the effect of fiber orientation on grinding force and micro-morphology.Besides,a three-phase cutting model of 2.5D C_(f)/SiC composites considering the mechanical properties of the matrix,fiber and interface is developed.Corresponding simulations are performed to reveal the micro-mechanism of crack initiation and extension as well as the material removal mechanism under different fiber orientations.The results indicate that the scratching forces fluctuate periodically,and the order of mean forces is MA>MC>MB.Cracks tend to grow along the fiber axis,which results in the largest damage layer for transverse fibers and the smallest for longitudinal fibers.The removal modes of transverse fibers are worn,fracture and peel-off,in which normal fibers are pullout and outcrop and the longitudinal fibers are worn and push-off.Under the stable cutting condition,the change of contact area between fiber and grit leads to different removal modes of fiber in the same cutting mode,and the increase of contact area results in the aggravation of fiber fracture. 展开更多
关键词 2.5D C_(f)/SiC composites Material removal mechanism Numerical modelling single grit scratch experiments Surface morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部