期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用于流式语音识别的轻量化端到端声学架构 被引量:1
1
作者 杨淑莹 李欣 《模式识别与人工智能》 EI CSCD 北大核心 2023年第3期268-279,共12页
在流式识别方法中,分块识别破坏并行性且消耗资源较大,而限制自注意力机制的上下文识别很难获得所有信息.由此,文中提出轻量化端到端声学架构(CFLASH-Transducer).为了获取细腻的局部特征,采用轻量化的FLASH(Fast Linear Attention with... 在流式识别方法中,分块识别破坏并行性且消耗资源较大,而限制自注意力机制的上下文识别很难获得所有信息.由此,文中提出轻量化端到端声学架构(CFLASH-Transducer).为了获取细腻的局部特征,采用轻量化的FLASH(Fast Linear Attention with a Single Head)与卷积神经网络块结合.卷积块中采用Inception V2网络,提取语音信号多尺度的局部特征.再通过Coordinate Attention机制捕获特征的位置信息和多通道之间的相互关联.此外,采用深度可分离卷积,用于特征增强和层间平滑过渡.为了使其可流式化处理音频,采用RNN-T(Recurrent Neural Network Transducer)架构进行训练与解码.将当前块已经计算的全局注意力作为隐变量,传入后续块中,串联各块信息,保留训练的并行性和相关性,并且不会随着序列的增长而消耗计算资源.在开源数据集THCHS30上进行训练与测试,CFLASH-Transducer取得较高的识别率.并且相比离线识别,流式识别精度损失不超过1%. 展开更多
关键词 自动语言识别 流式识别 Fast Linear Attention with a single Head(FLASH) 卷积神经网络(CNN) Re-current Neural Network Transducer(RNN-T)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部