Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has...Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.展开更多
The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ...The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.展开更多
Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieve...Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieved by a deep learning-based method.By constructing a very deep super-resolution convolutional neural network(VDSRCNN),the LR images can be improved to HR images.This study mainly achieves two objectives:image super-resolution(ISR)and deblurring the image from VDSRCNN.Firstly,by analyzing ISR,we modify different training parameters to test the performance of VDSRCNN.Secondly,we add the motion blurred images to the training set to optimize the performance of VDSRCNN.Finally,we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN.The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method.展开更多
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ...Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res...Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.展开更多
In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through ...In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through deeper layers,and has achieved impressive results.In this paper,we propose a single image super-resolution model based on Adaptive Deep Residual named as ADR-SR,which uses the Input Output Same Size(IOSS)structure,and releases the dependence of upsampling layers compared with the existing SR methods.Specifically,the key element of our model is the Adaptive Residual Block(ARB),which replaces the commonly used constant factor with an adaptive residual factor.The experiments prove the effectiveness of our ADR-SR model,which can not only reconstruct images with better visual effects,but also get better objective performances.展开更多
Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition er...Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.展开更多
Single-molecule fluorescence microscopy(SMFM)has been considered as a powerful tool to study nanocatalysis of single nanoparticles,due to its single-molecule sensitivity and high spatiotemporal resolution.In this revi...Single-molecule fluorescence microscopy(SMFM)has been considered as a powerful tool to study nanocatalysis of single nanoparticles,due to its single-molecule sensitivity and high spatiotemporal resolution.In this review,we discuss recent progresses on investigating nanocatalysis at single-mol-ecule/particle level by using SMFM.The discussion focuses on the applications of single-molecule methods in probing the chemocatalysis,electrocatalysis,photocatalysis and photoelectrocatalysis.Finally,we provide our opinions on limitations and prospects of the single-molecule fluorescence approach for investigating nanocatalysis.展开更多
Due to highly underdetermined nature of Single Image Super-Resolution(SISR)problem,deep learning neural networks are required to be more deeper to solve the problem effectively.One of deep neural networks successful i...Due to highly underdetermined nature of Single Image Super-Resolution(SISR)problem,deep learning neural networks are required to be more deeper to solve the problem effectively.One of deep neural networks successful in the Super-Resolution(SR)problem is ResNet which can render the capability of deeper networks with the help of skip connections.However,zero padding(ZP)scheme in the network restricts benefits of skip connections in SRResNet and its performance as the ratio of the number of pure input data to that of zero padded data increases.In this paper.we consider the ResNet with Partial Convolution based Padding(PCP)instead of ZP to solve SR problem.Since training of deep neural networks using patch images is advantageous in many aspects such as the number of training image data and network complexities,patch image based SR performance is compared with single full image based one.The experimental results show that patch based SRResNet SR results are better than single full image based ones and the performance of deep SRResNet with PCP is better than the one with ZP.展开更多
The resolution of conventional optical microscopy is only -200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution mic...The resolution of conventional optical microscopy is only -200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution microscopy (SRM) has been developed to achieve a high resolution of one to tens of nanometers. The techniques involved in SRM can be assigned into two broad categories, namely "true" super-resolution techniques and "functional" super-resolution techniques. In "functional" super-resolution techniques, stochastic super-resolution microscopy (SSRM) is widely used due to its low expense, simple operation, and high resolution. The principle process in SSRM is to accumulate the coordinates of many diffraction-limited emitters (e.g., single fluorescent molecules) on the object by localizing the centroids of the point spread functions (PSF), and then reconstruct the image of the object using these coordinates. When the diffraction-limited emitters take part in a catalytic reaction, the activity distribution and kinetic information about the catalysis by nanoparticles can be obtained by SSRM. SSRM has been applied and exhibited outstanding advantages in several fields of catalysis, such as metal nanoparticle catalysis, molecular sieve catalysis, and photocatalysis. Since SSRM is able to resolve the catalytic activity within one nanoparticle, it promises to accelerate the development and discovery of new and better catalysts. This review will present a brief introduction to SRM, and a detailed description of SSRM and its applications in nano-catalysis.展开更多
Solid-state atomic-sized color centers in wide-band-gap semiconductors,such as diamond,silicon carbide,and hexagonal boron nitride,are important platforms for quantum technologies,specifically for single-photon source...Solid-state atomic-sized color centers in wide-band-gap semiconductors,such as diamond,silicon carbide,and hexagonal boron nitride,are important platforms for quantum technologies,specifically for single-photon sources and quantum sensing.One of the emerging applications of these quantum emitters is subdiffraction imaging.This capability is provided by the specific photophysical properties of color centers,such as high dipole moments,photostability,and a variety of spectral ranges of the emitters with associated optical and microwave control of their quantum states.We review applications of color centers in traditional super-resolution microscopy and quantum imaging methods,and compare relative performance.The current state and perspectives of their applications in biomedical,chemistry,and material science imaging are outlined.展开更多
基金supported by Beijing Municipal Science and Technology Project(No.Z221100007122003).
文摘Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.
基金Guangdong Science and Technology Program under Grant No.202206010052Foshan Province R&D Key Project under Grant No.2020001006827Guangdong Academy of Sciences Integrated Industry Technology Innovation Center Action Special Project under Grant No.2022GDASZH-2022010108.
文摘The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.
文摘Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieved by a deep learning-based method.By constructing a very deep super-resolution convolutional neural network(VDSRCNN),the LR images can be improved to HR images.This study mainly achieves two objectives:image super-resolution(ISR)and deblurring the image from VDSRCNN.Firstly,by analyzing ISR,we modify different training parameters to test the performance of VDSRCNN.Secondly,we add the motion blurred images to the training set to optimize the performance of VDSRCNN.Finally,we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN.The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method.
基金The authors are highly thankful to the Development Research Center of Guangxi Relatively Sparse-populated Minorities(ID:GXRKJSZ201901)to the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281164)This research was financially supported by the project of outstanding thousand young teachers’training in higher education institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing.
文摘Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金This work was supported in part by the National Science Foundation of China under Grant 61572526.
文摘Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.
基金supported in part by National Natural Science Foundation of China(No.61571046)National Key R&D Program of China(No.2017YFF0209806).
文摘In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through deeper layers,and has achieved impressive results.In this paper,we propose a single image super-resolution model based on Adaptive Deep Residual named as ADR-SR,which uses the Input Output Same Size(IOSS)structure,and releases the dependence of upsampling layers compared with the existing SR methods.Specifically,the key element of our model is the Adaptive Residual Block(ARB),which replaces the commonly used constant factor with an adaptive residual factor.The experiments prove the effectiveness of our ADR-SR model,which can not only reconstruct images with better visual effects,but also get better objective performances.
文摘Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.
基金the National Natural Science Foundation of China(21925205,22072145,21733004,U1601211,21633008,2017YFE0197900,2018YFB1502302,and 21721003)K.C.Wong Education Foundation and Science.
文摘Single-molecule fluorescence microscopy(SMFM)has been considered as a powerful tool to study nanocatalysis of single nanoparticles,due to its single-molecule sensitivity and high spatiotemporal resolution.In this review,we discuss recent progresses on investigating nanocatalysis at single-mol-ecule/particle level by using SMFM.The discussion focuses on the applications of single-molecule methods in probing the chemocatalysis,electrocatalysis,photocatalysis and photoelectrocatalysis.Finally,we provide our opinions on limitations and prospects of the single-molecule fluorescence approach for investigating nanocatalysis.
文摘Due to highly underdetermined nature of Single Image Super-Resolution(SISR)problem,deep learning neural networks are required to be more deeper to solve the problem effectively.One of deep neural networks successful in the Super-Resolution(SR)problem is ResNet which can render the capability of deeper networks with the help of skip connections.However,zero padding(ZP)scheme in the network restricts benefits of skip connections in SRResNet and its performance as the ratio of the number of pure input data to that of zero padded data increases.In this paper.we consider the ResNet with Partial Convolution based Padding(PCP)instead of ZP to solve SR problem.Since training of deep neural networks using patch images is advantageous in many aspects such as the number of training image data and network complexities,patch image based SR performance is compared with single full image based one.The experimental results show that patch based SRResNet SR results are better than single full image based ones and the performance of deep SRResNet with PCP is better than the one with ZP.
文摘The resolution of conventional optical microscopy is only -200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution microscopy (SRM) has been developed to achieve a high resolution of one to tens of nanometers. The techniques involved in SRM can be assigned into two broad categories, namely "true" super-resolution techniques and "functional" super-resolution techniques. In "functional" super-resolution techniques, stochastic super-resolution microscopy (SSRM) is widely used due to its low expense, simple operation, and high resolution. The principle process in SSRM is to accumulate the coordinates of many diffraction-limited emitters (e.g., single fluorescent molecules) on the object by localizing the centroids of the point spread functions (PSF), and then reconstruct the image of the object using these coordinates. When the diffraction-limited emitters take part in a catalytic reaction, the activity distribution and kinetic information about the catalysis by nanoparticles can be obtained by SSRM. SSRM has been applied and exhibited outstanding advantages in several fields of catalysis, such as metal nanoparticle catalysis, molecular sieve catalysis, and photocatalysis. Since SSRM is able to resolve the catalytic activity within one nanoparticle, it promises to accelerate the development and discovery of new and better catalysts. This review will present a brief introduction to SRM, and a detailed description of SSRM and its applications in nano-catalysis.
文摘Solid-state atomic-sized color centers in wide-band-gap semiconductors,such as diamond,silicon carbide,and hexagonal boron nitride,are important platforms for quantum technologies,specifically for single-photon sources and quantum sensing.One of the emerging applications of these quantum emitters is subdiffraction imaging.This capability is provided by the specific photophysical properties of color centers,such as high dipole moments,photostability,and a variety of spectral ranges of the emitters with associated optical and microwave control of their quantum states.We review applications of color centers in traditional super-resolution microscopy and quantum imaging methods,and compare relative performance.The current state and perspectives of their applications in biomedical,chemistry,and material science imaging are outlined.