To investigate the effect of covID-19 control measures on aerosol chemistry,the chemical compositions,mixing states,and formation mechanisms of carbonaceous particles in the urban atmosphere of Liao-cheng in the North...To investigate the effect of covID-19 control measures on aerosol chemistry,the chemical compositions,mixing states,and formation mechanisms of carbonaceous particles in the urban atmosphere of Liao-cheng in the North China Plain(NCP)were compared before and during the pandemic using a single particle aerosol mass spectrometry(SPAMS).The results showed that the concentrations of five air pollutants including PM2.5,PM1o,SO2,NO2,and cO decreased by 41.2%-71.5%during the pandemic compared to those before the pandemic,whereas O3 increased by 1.3 times during the pandemic because of the depressed titration of O3 and more favorable meteorological conditions.The count and percentage contribution of carbonaceous particles in the total detected particles were lower during the pandemic than those before the pandemic.The carbonaceous particles were dominated by elemental and organic carbon(ECOC,35.9%),followed by elemental carbon-aged(EC-aged,19.6%)and organic carbon-fresh(OC-fresh,13.5%)before the pandemic,while EC-aged(25.3%),ECOC(17.9%),and secondary ions-rich(SEC,17.8%)became the predominant species during the pandemic.The carbonaceous particle sizes during the pandemic showed a broader distribution than that before the pandemic,due to the condensation and coagulation of carbonaceous particles in the aging processes.The relative aerosol acidity(Rra)was smaller before the pandemic than that during the pandemic,indicating the more acidic particle aerosol during the pandemic closely related to the secondary species and relative humidity(RH).More than 95.0%and 86.0%of carbonaceous particles in the whole period were internally mixed with nitrate and sulfate,implying that most of the carbonaceous particles were associated with secondary oxidation during their formation processes.The diurnal variations of oxalate particles and correlation analyses suggested that oxalate particles before the pandemic were derived from aqueous oxidation driven by RH and liquid water content(LwC),while oxalate particles during the pandemic were originated from O3-dominatedphotochemical oxidation.展开更多
A single particle aerosol mass spectrometer was deployed to measure the changes of single particle species and sizes during March 2015 in Weizhou Island of the Beibu Gulf, Guangxi province, South China. In this campai...A single particle aerosol mass spectrometer was deployed to measure the changes of single particle species and sizes during March 2015 in Weizhou Island of the Beibu Gulf, Guangxi province, South China. In this campaign, a total of 3,100,597 particles were sized, and 25.8%particles with both positive and negative mass spectrum were collected and 24.8%characterized in combination with the ART-2 a neural network algorithm. The distribution of sized particles was mainly in from 520 to 600 nm, and the diameters ranging from 340 to1000 nm accounted for above 90%. Eight types of particles were classified: Elemental Carbon containing(EC), Organic Carbon containing(OC), EC and OC combined containing particles,Na containing particles, K containing particles(K), Levoglucosan containing particles,mineral containing particles, and Heavy Metal containing particles(HM). EC, OC and K were the major containing particles, which accounted for 84.3% in the eight types particles. The relative ratio and size distribution of the three types were EC(48.1%, 620 nm), OC(12.7%,440 nm), and K(23.5%, 600 nm), respectively. The three types of particles were a bit increasing ratios compared with those in clean periods during haze pollution periods.Combined with the back-trajectory results from the Hysplit-4 model and local pollution sources revealed that the ambient air quality on the Weizhou Island may be influenced by biomass burning in the Indochina Peninsula(biomass burning in the Indochina Peninsula)from the transportation on higher level atmospheric layer and by mainland of south China located northeast of Weizhou Island on the ground.展开更多
Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, a...Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, air masses are influenced by pollution outflows from the Asian continent. The size and elemental composition of dry deposited particles were investigated using a scanning electron microscope. Number-size distributions of these particles were approximately lognormal. Under clear conditions, the mode size was about 5.0 μm, with a mean diameter of 6.9 μm. Under cloudy and foggy conditions, the mean diameters were 5.7 and 6.0 μm, respectively, but the mode sizes were vague. Non-mixed mineral particles, sea salt, and mixed mineral-sea salt particles were the major particle types. Correspondingly, Al and Si were the most frequently detected elements. Frequencies of K-, Ca-, and S-containing particles were highest under foggy conditions, while the frequency of Na-containing particles was lowest. These results indicate that fog favored sulfate production on the particles and led to the deposited mineral particles more abundant in secondary salt, suggesting the importance to consider the dependence of the comoosition of deoosited mineral narticles on weather as well as narticle size.展开更多
基金supported by the National Natural Science Fund of China(grant number 42177083)Natural Science Foundation of Shandong Province(grant number ZR2020MD113)and Open Funds of State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences(grant number SKLLOG2020).
文摘To investigate the effect of covID-19 control measures on aerosol chemistry,the chemical compositions,mixing states,and formation mechanisms of carbonaceous particles in the urban atmosphere of Liao-cheng in the North China Plain(NCP)were compared before and during the pandemic using a single particle aerosol mass spectrometry(SPAMS).The results showed that the concentrations of five air pollutants including PM2.5,PM1o,SO2,NO2,and cO decreased by 41.2%-71.5%during the pandemic compared to those before the pandemic,whereas O3 increased by 1.3 times during the pandemic because of the depressed titration of O3 and more favorable meteorological conditions.The count and percentage contribution of carbonaceous particles in the total detected particles were lower during the pandemic than those before the pandemic.The carbonaceous particles were dominated by elemental and organic carbon(ECOC,35.9%),followed by elemental carbon-aged(EC-aged,19.6%)and organic carbon-fresh(OC-fresh,13.5%)before the pandemic,while EC-aged(25.3%),ECOC(17.9%),and secondary ions-rich(SEC,17.8%)became the predominant species during the pandemic.The carbonaceous particle sizes during the pandemic showed a broader distribution than that before the pandemic,due to the condensation and coagulation of carbonaceous particles in the aging processes.The relative aerosol acidity(Rra)was smaller before the pandemic than that during the pandemic,indicating the more acidic particle aerosol during the pandemic closely related to the secondary species and relative humidity(RH).More than 95.0%and 86.0%of carbonaceous particles in the whole period were internally mixed with nitrate and sulfate,implying that most of the carbonaceous particles were associated with secondary oxidation during their formation processes.The diurnal variations of oxalate particles and correlation analyses suggested that oxalate particles before the pandemic were derived from aqueous oxidation driven by RH and liquid water content(LwC),while oxalate particles during the pandemic were originated from O3-dominatedphotochemical oxidation.
基金supported by the Innovation Funds for Scientific Research Academy of Guangxi Environmental Protection(No.HKYCX-2015-5)Guangxi key research and development plan for Department of Guangxi Science(No.GUIKEAB16380292)+1 种基金the China Ministry of Environmental Protection's Special Funds for Scientific Research on Public Welfare(No.201309016)the support from the operation and maintenance teams of the environment observation stations in Beihai
文摘A single particle aerosol mass spectrometer was deployed to measure the changes of single particle species and sizes during March 2015 in Weizhou Island of the Beibu Gulf, Guangxi province, South China. In this campaign, a total of 3,100,597 particles were sized, and 25.8%particles with both positive and negative mass spectrum were collected and 24.8%characterized in combination with the ART-2 a neural network algorithm. The distribution of sized particles was mainly in from 520 to 600 nm, and the diameters ranging from 340 to1000 nm accounted for above 90%. Eight types of particles were classified: Elemental Carbon containing(EC), Organic Carbon containing(OC), EC and OC combined containing particles,Na containing particles, K containing particles(K), Levoglucosan containing particles,mineral containing particles, and Heavy Metal containing particles(HM). EC, OC and K were the major containing particles, which accounted for 84.3% in the eight types particles. The relative ratio and size distribution of the three types were EC(48.1%, 620 nm), OC(12.7%,440 nm), and K(23.5%, 600 nm), respectively. The three types of particles were a bit increasing ratios compared with those in clean periods during haze pollution periods.Combined with the back-trajectory results from the Hysplit-4 model and local pollution sources revealed that the ambient air quality on the Weizhou Island may be influenced by biomass burning in the Indochina Peninsula(biomass burning in the Indochina Peninsula)from the transportation on higher level atmospheric layer and by mainland of south China located northeast of Weizhou Island on the ground.
基金This study was supported by the Education Bureau of Hebei Province for Excellent Young Scholars (YQ2014020), the Natu- ral Science Foundation of Hebei Province (D2016402120) and the National Natural Science Foundation of China (41541038). The Chinese Scholarship Council (CSC) supported Wei Hu's research at the Prefectural University of Kumamoto, Japan. We thank Ms. Jin-hui Shi and Ms. Cheng-cheng Chen for their assistance with particle collection, and Nicholas James O'Connor for his assistance with editing.
文摘Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, air masses are influenced by pollution outflows from the Asian continent. The size and elemental composition of dry deposited particles were investigated using a scanning electron microscope. Number-size distributions of these particles were approximately lognormal. Under clear conditions, the mode size was about 5.0 μm, with a mean diameter of 6.9 μm. Under cloudy and foggy conditions, the mean diameters were 5.7 and 6.0 μm, respectively, but the mode sizes were vague. Non-mixed mineral particles, sea salt, and mixed mineral-sea salt particles were the major particle types. Correspondingly, Al and Si were the most frequently detected elements. Frequencies of K-, Ca-, and S-containing particles were highest under foggy conditions, while the frequency of Na-containing particles was lowest. These results indicate that fog favored sulfate production on the particles and led to the deposited mineral particles more abundant in secondary salt, suggesting the importance to consider the dependence of the comoosition of deoosited mineral narticles on weather as well as narticle size.