A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. T...A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. The diameter of the particle is derived from its mass, which is calibrated using the peak area. This is the basic principle of measuring single particles using inductively coupled plasma mass spectrometry (ICP-MS). In this paper, a mathematical model describing single particles in plasma is investigated. This makes it possible to investigate the process and contributing factors of single particles measurement by ICP-MS. A series of processes are investigated, which include increasing the droplet temperature to the boiling point, desolvation of the droplets, increasing the particle temperature to the melting point, the particles are melted from a solid to the liquid, increasing the particle temperature to the boiling point, and particle vaporization. The simulation shows that both the atomic (ion) diffusion in the plasma and the incomplete vaporization of the particles are two important factors that limit the signal intensity of the particle’s mass spectrum. The experiment reveals that ICP-MS is very linear for Ag nanoparticles below 100 nm and SiO2 particles below 1000 nm. Both the simulation and experiment reveal the measurement deviation for large particles and that an increase of sampling depth can extend the diffusion time and cause signal suppression. The model can be used to study the mechanisms of monodispersed droplet or single-particle mass spectrometry, analyze the contributing parameters for single particle measurements by ICP-MS and provide a theoretical base for the optimization of single particle measurements in the practical application, such as nanoparticle devices, magnetic materials, biomedical materials additives and consumer products.展开更多
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexist...Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.展开更多
文摘A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. The diameter of the particle is derived from its mass, which is calibrated using the peak area. This is the basic principle of measuring single particles using inductively coupled plasma mass spectrometry (ICP-MS). In this paper, a mathematical model describing single particles in plasma is investigated. This makes it possible to investigate the process and contributing factors of single particles measurement by ICP-MS. A series of processes are investigated, which include increasing the droplet temperature to the boiling point, desolvation of the droplets, increasing the particle temperature to the melting point, the particles are melted from a solid to the liquid, increasing the particle temperature to the boiling point, and particle vaporization. The simulation shows that both the atomic (ion) diffusion in the plasma and the incomplete vaporization of the particles are two important factors that limit the signal intensity of the particle’s mass spectrum. The experiment reveals that ICP-MS is very linear for Ag nanoparticles below 100 nm and SiO2 particles below 1000 nm. Both the simulation and experiment reveal the measurement deviation for large particles and that an increase of sampling depth can extend the diffusion time and cause signal suppression. The model can be used to study the mechanisms of monodispersed droplet or single-particle mass spectrometry, analyze the contributing parameters for single particle measurements by ICP-MS and provide a theoretical base for the optimization of single particle measurements in the practical application, such as nanoparticle devices, magnetic materials, biomedical materials additives and consumer products.
基金supported by the National Key Research and Development Project (No.2020YFA0907400)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDPB2005)+2 种基金National Natural Science Foundation of China(No.21777178)the National Young Top-Notch Talents (No.W03070030)Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.Y202011)。
文摘Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.