Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor perf...Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor performance by balancing the stator phase operation for the most common-used connection diagrams of single-phase capacitor-run induction motors (SPCRIMs) and three-phase induction motors (TPIMs) operating from single-phase supply (SPS). Therefore, a mathematical model is used to balance the motor operation by varying the frequency supply voltage. Characteristics of balancing parameters are investigated, various methods of motor balancing are presented and comparisons were done among these balancing methods.展开更多
Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based o...Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based on the transient mea- surement and can distinguish the fault of one phase connecting ground. The method has been proved to be in correspondence with the simulation results by Matlab and LabVIEW in practice, The method has merits of simplicity, accuracy and ease of USe.展开更多
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome t...Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome these issues,a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study.Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam,due to the coupling property of the combined structure.This results in the production of elliptical motions in the two driving rings to achieve the drive function.An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer.Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model.Besides,the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring.Additionally,application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system.Experimental results indicated that 1)the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments;2)motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N,at the excitation voltage of 500 V_(RMS).These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.展开更多
文摘Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor performance by balancing the stator phase operation for the most common-used connection diagrams of single-phase capacitor-run induction motors (SPCRIMs) and three-phase induction motors (TPIMs) operating from single-phase supply (SPS). Therefore, a mathematical model is used to balance the motor operation by varying the frequency supply voltage. Characteristics of balancing parameters are investigated, various methods of motor balancing are presented and comparisons were done among these balancing methods.
文摘Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based on the transient mea- surement and can distinguish the fault of one phase connecting ground. The method has been proved to be in correspondence with the simulation results by Matlab and LabVIEW in practice, The method has merits of simplicity, accuracy and ease of USe.
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
基金Supported by the National Science Foundation of China(Grants Nos.51905262 and U2037603)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190398)the State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202011).
文摘Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome these issues,a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study.Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam,due to the coupling property of the combined structure.This results in the production of elliptical motions in the two driving rings to achieve the drive function.An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer.Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model.Besides,the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring.Additionally,application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system.Experimental results indicated that 1)the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments;2)motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N,at the excitation voltage of 500 V_(RMS).These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.