Understanding the ultrafast carrier dynamics and the mechanism of two-dimensional(2D)transition metal dichalcogenides(TMDs)is key to their applications in the field of optoelectronic devices.In this work,a single puls...Understanding the ultrafast carrier dynamics and the mechanism of two-dimensional(2D)transition metal dichalcogenides(TMDs)is key to their applications in the field of optoelectronic devices.In this work,a single pulse pump probe method is introduced to detect the layer-dependent ultrafast carrier dynamics of monolayer and few-layer WS_(2) excited by a femtosecond pulse.Results show that the ultrafast carrier dynamics of the layered WS_(2) films can be divided into three stages:the fast photoexcitation phase with the characteristic time of 2–4 ps,the fast decay phase with the characteristic time of 4–20 ps,and the slow decay phase lasting several hundred picoseconds.Moreover,the layer dependency of the characteristic time of each stage has been observed,and the corresponding mechanism of free carrier dynamics has been discussed.It has been observed as well that the monolayer WS_(2) exhibits a unique rising time of carriers after photoexcitation.The proposed method can be expected to be an effective approach for studying the dynamics of the photoexcited carriers in 2D TMDs.Our results provide a comprehensive understanding of the photoexcited carrier dynamics of layered WS_(2),which is essential for its application in optoelectronics and photovoltaic devices.展开更多
Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the ...Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D^2 of the ablated craters and the laser fluence Ф0. From the plot of the accumulated laser fluence NCth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.展开更多
The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent L...The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent LET is tested,the sensitive areas of the SET effects are identified in voltage follower application mode of LM124J, and the mechanism is initially analyzed. The transient amplitude and duration of HCPL5231 at various equivalent LET are examined,and the SET cross-section is measured. The results of our test and heavy ion experimental data coincide closely,indicating that a pulsed laser test facility is a valid tool for single event effect evaluation.展开更多
Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed struct...Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.展开更多
A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r...A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.展开更多
For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already ...For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.展开更多
In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loa...In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range.The impacting tests are carried out on the pressure-shear gas gun.The loading rate achieved is dK/dt~10~8 MPam^(1/2)s^(-1).With the elimination of influence of the specimen boundary,the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the 'momentum trap'technique.Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces.In the current study,some important phenomena have been observed.The special loading of the single pulse can bring about material damage around crack tip,and affect the material behavior,such as kinking and branching of the crack propagation.Failure mode transitions from mode Ⅰ to mode Ⅱ crack are observed under asymmetrical impact conditions.The mechanisms of the dynamic crack propagation are consistent with the damage failure model.展开更多
In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a fi...In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a finite element simulation and an experiment,it was verified that the output power of SRG cannot be improved by using freewheeling control with a single pulse control method(SPCM).Then,the maximum output power can be obtained by optimizing the turn off angles of SPCM at a constant speed,and at the same time,the formula of the optimal turn-off angle was presented,which meets the criterion for the output power maximization.Finally,numerical simulation and experimental results demonstrated the validity of the theoretical analysis.展开更多
Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet ...Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of ~0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in Al N presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.展开更多
Technology scaling results in the propagation-induced pulse broadening and quenching(PIPBQ) effect become more noticeable.In order to effectively evaluate the soft error rate for combinational logic circuits,a soft ...Technology scaling results in the propagation-induced pulse broadening and quenching(PIPBQ) effect become more noticeable.In order to effectively evaluate the soft error rate for combinational logic circuits,a soft error rate analysis approach considering the PIPBQ effect is proposed.As different original pulse propagating through logic gate cells,pulse broadening and quenching are measured by HSPICE.After that,electrical effect look-up tables(EELUTs) for logic gate cells are created to evaluate the PIPBQ effect.Sensitized paths are accurately retrieved by the proposed re-convergence aware sensitized path search algorithm.Further,by propagating pulses on these paths to simulate fault injection,the PIPBQ effect on these paths can be quantified by EELUTs.As a result,the soft error rate of circuits can be effectively computed by the proposed technique.Simulation results verify the soft error rate improvement comparing with the PIPBQ-not-aware method.展开更多
Insulating ceramics are applied to modern manufacturing industries for their improved material properties.But they are the difficult-to-machine materials because of their high rigidity,high brittleness and non-electri...Insulating ceramics are applied to modern manufacturing industries for their improved material properties.But they are the difficult-to-machine materials because of their high rigidity,high brittleness and non-electrical conductivity.A new method which employs a high energy capacitor for electric discharge machining of insulating ceramics efficiently is presented in this paper,and the single discharge experiments have been carried out.The process uses the high voltage,large capacitor and high discharge energy,it is able to effectively machine insulating ceramics,and the single discharge crater volume of insulating ceramics can reach 17.63 mm3.The effects of polarity,peak voltage,capacitance,current-limiting resistance,tool electrode feed,tool electrode section area and assisting electrode thickness on the process performance such as the single discharge crater volume,the tool wear ratio and the assisting electrode wear ratio have been investigated.The microstructure of the discharge crater is examined with a scanning electron microscope(SEM).The results show that the discharge craters have sputtering appearance,the insulating ceramic materials are mostly removed by spalling,in the center region of the discharge some materials are removed by melting and vaporization,and the material removal is enhanced with the machining parameters increasing.展开更多
Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, ...Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing (OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algo- rithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.展开更多
Nuclear magnetic moment provides a highly sensitive probe into the single-particle structure and serves as a stringent test of nuclear models. In recent decades, the facilities with radioactive ion beam models to stud...Nuclear magnetic moment provides a highly sensitive probe into the single-particle structure and serves as a stringent test of nuclear models. In recent decades, the facilities with radioactive ion beam models to study nuclear magnetic moments make it possible to measure the magnetic moments of neutron-rich and proton-rich nuclei with high precision. On the theoretical side,展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51975232 and 51727809)the Experiment Center for Advanced Manufacturing and Technology in the School of Mechanical Science & Engineering of HUST for the technical support.
文摘Understanding the ultrafast carrier dynamics and the mechanism of two-dimensional(2D)transition metal dichalcogenides(TMDs)is key to their applications in the field of optoelectronic devices.In this work,a single pulse pump probe method is introduced to detect the layer-dependent ultrafast carrier dynamics of monolayer and few-layer WS_(2) excited by a femtosecond pulse.Results show that the ultrafast carrier dynamics of the layered WS_(2) films can be divided into three stages:the fast photoexcitation phase with the characteristic time of 2–4 ps,the fast decay phase with the characteristic time of 4–20 ps,and the slow decay phase lasting several hundred picoseconds.Moreover,the layer dependency of the characteristic time of each stage has been observed,and the corresponding mechanism of free carrier dynamics has been discussed.It has been observed as well that the monolayer WS_(2) exhibits a unique rising time of carriers after photoexcitation.The proposed method can be expected to be an effective approach for studying the dynamics of the photoexcited carriers in 2D TMDs.Our results provide a comprehensive understanding of the photoexcited carrier dynamics of layered WS_(2),which is essential for its application in optoelectronics and photovoltaic devices.
基金This work was supported by the Key Grant Project of the Ministry of Education of China (No. 10410)the Science and Technology Development Project Fund of Tianjin (No. 043103911)the Specialized Research Fund for the Doctoral Program of Higher Education (No.2003056021), and the Postdoctoral Science Foundation in China.
文摘Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D^2 of the ablated craters and the laser fluence Ф0. From the plot of the accumulated laser fluence NCth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.
文摘The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent LET is tested,the sensitive areas of the SET effects are identified in voltage follower application mode of LM124J, and the mechanism is initially analyzed. The transient amplitude and duration of HCPL5231 at various equivalent LET are examined,and the SET cross-section is measured. The results of our test and heavy ion experimental data coincide closely,indicating that a pulsed laser test facility is a valid tool for single event effect evaluation.
基金jointly supported by the National Key Research and Development Program of China (2019YFB22-05202)National Natural Science Foundation of China(61774152)
文摘Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.
基金Project supported by Tsinghua University Initiative Scientific Research Program,China(Grant No.2014z21035)
文摘A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.
基金Supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through Discovery Grant(72031326)
文摘For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.
基金The project supported by the National Natural Science Foundation of China(No.19672066 and 18981180-4)and the Key Project of Chinese Academy of Sciences(No.KJ951-1-20)
文摘In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range.The impacting tests are carried out on the pressure-shear gas gun.The loading rate achieved is dK/dt~10~8 MPam^(1/2)s^(-1).With the elimination of influence of the specimen boundary,the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the 'momentum trap'technique.Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces.In the current study,some important phenomena have been observed.The special loading of the single pulse can bring about material damage around crack tip,and affect the material behavior,such as kinking and branching of the crack propagation.Failure mode transitions from mode Ⅰ to mode Ⅱ crack are observed under asymmetrical impact conditions.The mechanisms of the dynamic crack propagation are consistent with the damage failure model.
文摘In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a finite element simulation and an experiment,it was verified that the output power of SRG cannot be improved by using freewheeling control with a single pulse control method(SPCM).Then,the maximum output power can be obtained by optimizing the turn off angles of SPCM at a constant speed,and at the same time,the formula of the optimal turn-off angle was presented,which meets the criterion for the output power maximization.Finally,numerical simulation and experimental results demonstrated the validity of the theoretical analysis.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61575129 and 11447029)the Science&Technology Innovation Committee Foundation of Shenzhen(No.JCYJ20160328144942069)
文摘Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of ~0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in Al N presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.
基金supported by the National Natural Science Foundation of China under Grant No.61274036No.61106038+1 种基金No.61371025and No.61474036
文摘Technology scaling results in the propagation-induced pulse broadening and quenching(PIPBQ) effect become more noticeable.In order to effectively evaluate the soft error rate for combinational logic circuits,a soft error rate analysis approach considering the PIPBQ effect is proposed.As different original pulse propagating through logic gate cells,pulse broadening and quenching are measured by HSPICE.After that,electrical effect look-up tables(EELUTs) for logic gate cells are created to evaluate the PIPBQ effect.Sensitized paths are accurately retrieved by the proposed re-convergence aware sensitized path search algorithm.Further,by propagating pulses on these paths to simulate fault injection,the PIPBQ effect on these paths can be quantified by EELUTs.As a result,the soft error rate of circuits can be effectively computed by the proposed technique.Simulation results verify the soft error rate improvement comparing with the PIPBQ-not-aware method.
基金supported by the National Natural Science Foundation of China (Grant No 50675225)the Ministry of Science and Technology of China (Grant No 2009GJC60047)
文摘Insulating ceramics are applied to modern manufacturing industries for their improved material properties.But they are the difficult-to-machine materials because of their high rigidity,high brittleness and non-electrical conductivity.A new method which employs a high energy capacitor for electric discharge machining of insulating ceramics efficiently is presented in this paper,and the single discharge experiments have been carried out.The process uses the high voltage,large capacitor and high discharge energy,it is able to effectively machine insulating ceramics,and the single discharge crater volume of insulating ceramics can reach 17.63 mm3.The effects of polarity,peak voltage,capacitance,current-limiting resistance,tool electrode feed,tool electrode section area and assisting electrode thickness on the process performance such as the single discharge crater volume,the tool wear ratio and the assisting electrode wear ratio have been investigated.The microstructure of the discharge crater is examined with a scanning electron microscope(SEM).The results show that the discharge craters have sputtering appearance,the insulating ceramic materials are mostly removed by spalling,in the center region of the discharge some materials are removed by melting and vaporization,and the material removal is enhanced with the machining parameters increasing.
基金supported by the National Natural Science Foundation of China(No.61401475)
文摘Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing (OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algo- rithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.
文摘Nuclear magnetic moment provides a highly sensitive probe into the single-particle structure and serves as a stringent test of nuclear models. In recent decades, the facilities with radioactive ion beam models to study nuclear magnetic moments make it possible to measure the magnetic moments of neutron-rich and proton-rich nuclei with high precision. On the theoretical side,