Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry...Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.展开更多
Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques i...Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.展开更多
The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.展开更多
The positive-parity single-neutron levels in an axially-deformed relativistic quadrupole Woods-Saxon potential are analyzed. Neutron states are obtained as the solutions of the corresponding single-particle Dirac equa...The positive-parity single-neutron levels in an axially-deformed relativistic quadrupole Woods-Saxon potential are analyzed. Neutron states are obtained as the solutions of the corresponding single-particle Dirac equation, using the coupled-channels method in the coordinate space. The evolution of the levels close to the continuum threshold and, in particular, the occurrence of singleneutron resonant states as the functions of the axial deformation parameter 0 β 0.5, are examined using the eigenphase representation. Calculations are performed for different values of the radius of the potential (R/r 0 ) 3 , corresponding to a variation of the mass number A.展开更多
The fall armyworm Spodoptera frugiperda is a worldwide serious agricultural pest,and recently invaded South China.Sex pheromone can be employed to monitor its population dynamics accurately in the field.However,the ph...The fall armyworm Spodoptera frugiperda is a worldwide serious agricultural pest,and recently invaded South China.Sex pheromone can be employed to monitor its population dynamics accurately in the field.However,the pheromone components previously reported by testing different geographic populations and strains are not consistent.On the basis of confirming that the S.frugiperda population from Yunnan Province belonged to the com strain,we analyzed the potential sex pheromone components in the pheromone gland extracts of females using gas chromatography coupled with electroan-tennographic detection(GC-EAD),gas chromatography coupled with mass spectrometry(GC-MS)and electroantennography(EAG).The results show that(Z)-9-tetradecenal acetate(Z9-14:Ac),(Z)-11-hexadecenyl acetate(Z11-16:Ac),(Z)-7-dodecenyl acetate(Z7-12:Ac)or(E)-7-dodecenyl acetate(E7-12:Ac)with a ratio of 100:15.8:3.9 induced EAD responses to varying degrees:Z9-14:Ac elicited a strong EAD response,Z7-12:Ac or E7-12:Ac elicited a small but clear EAD response,while Z11-16:Ac elicited a weak EAD response.Further single sensillum recording(SSR)showed that Z9-14:Ac and Z7-12:Ac induced dose-dependent activities in two types(A and B)of sensilla in male antennae,respectively,while the sensilla in response to E7-12:Ac and Z11-16:Ac was not recorded.Finally,wind tunnel tests reveal that Z9-14:Ac and Z7-12:Ac are two principal sex pheromone components of the tested population.展开更多
Over the past decade,systems biology and plant-omics have increasingly become the main stream in plant biology research.New developments in mass spectrometry and bioinformatics tools,and methodological schema to inte-...Over the past decade,systems biology and plant-omics have increasingly become the main stream in plant biology research.New developments in mass spectrometry and bioinformatics tools,and methodological schema to inte-grate multi-omics data have leveraged recent advances in proteomics and metabolomics.These progresses are driv-ing a rapid evolution in the field of plant research,greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment.Here,we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response,gene/protein function characterization,metabolic and signaling pathways exploration,and natural product discovery.We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology.This review is intended to provide readers with an overview of how advanced MS technology,and integrated application of proteomics and metabolomics can be used to advance plant system biology research.展开更多
基金the financial support from China Postdoctoral Science Foundation(2018M643205)
文摘Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.
基金supported by the Gudong Oil Production Plant of Shengli Oilfield Subsidiary Company,China Postdoctoral Science Foundation(Project 2013M530681)Hubei Province Natural Science Foundation(Project 2013CFB394)
文摘Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775004 and 10975008)the Major State 973Program (Grant No. 2007CB815000)
文摘The positive-parity single-neutron levels in an axially-deformed relativistic quadrupole Woods-Saxon potential are analyzed. Neutron states are obtained as the solutions of the corresponding single-particle Dirac equation, using the coupled-channels method in the coordinate space. The evolution of the levels close to the continuum threshold and, in particular, the occurrence of singleneutron resonant states as the functions of the axial deformation parameter 0 β 0.5, are examined using the eigenphase representation. Calculations are performed for different values of the radius of the potential (R/r 0 ) 3 , corresponding to a variation of the mass number A.
基金This work was supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZDSW-L07)the National Natural Science Foundation of China(Grant No.31830088,31772528).
文摘The fall armyworm Spodoptera frugiperda is a worldwide serious agricultural pest,and recently invaded South China.Sex pheromone can be employed to monitor its population dynamics accurately in the field.However,the pheromone components previously reported by testing different geographic populations and strains are not consistent.On the basis of confirming that the S.frugiperda population from Yunnan Province belonged to the com strain,we analyzed the potential sex pheromone components in the pheromone gland extracts of females using gas chromatography coupled with electroan-tennographic detection(GC-EAD),gas chromatography coupled with mass spectrometry(GC-MS)and electroantennography(EAG).The results show that(Z)-9-tetradecenal acetate(Z9-14:Ac),(Z)-11-hexadecenyl acetate(Z11-16:Ac),(Z)-7-dodecenyl acetate(Z7-12:Ac)or(E)-7-dodecenyl acetate(E7-12:Ac)with a ratio of 100:15.8:3.9 induced EAD responses to varying degrees:Z9-14:Ac elicited a strong EAD response,Z7-12:Ac or E7-12:Ac elicited a small but clear EAD response,while Z11-16:Ac elicited a weak EAD response.Further single sensillum recording(SSR)showed that Z9-14:Ac and Z7-12:Ac induced dose-dependent activities in two types(A and B)of sensilla in male antennae,respectively,while the sensilla in response to E7-12:Ac and Z11-16:Ac was not recorded.Finally,wind tunnel tests reveal that Z9-14:Ac and Z7-12:Ac are two principal sex pheromone components of the tested population.
基金This research was supported by the Key Realm R&D Program of Guangdong Province(No.2020B0202090005)the Science and Technology Program of Guangdong Province(2021A0505030050)+2 种基金the Project of Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences(XTXM202203)the Special Fund for Scientific Innovation Strategy-construction of High-Level Academy of Agriculture Science(No.R2020PY-JX019,R2021YJ-QG004)two USDA grants(No.8062-21000-046-00D and No.8062-21000-047-00D)。
文摘Over the past decade,systems biology and plant-omics have increasingly become the main stream in plant biology research.New developments in mass spectrometry and bioinformatics tools,and methodological schema to inte-grate multi-omics data have leveraged recent advances in proteomics and metabolomics.These progresses are driv-ing a rapid evolution in the field of plant research,greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment.Here,we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response,gene/protein function characterization,metabolic and signaling pathways exploration,and natural product discovery.We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology.This review is intended to provide readers with an overview of how advanced MS technology,and integrated application of proteomics and metabolomics can be used to advance plant system biology research.