Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth m...Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth migration velocity model. The traditional symmetrical travel time equation is derived based on the assumption of a layered model. It is difficult to achieve the desired effect of focusing in media with strong lateral variation. The nonsymmetrical travel time equation based on Lie algebra and a pseudo-differential operator contains a lateral velocity derivative which can improve the focusing capability even in strongly lateral variable media and also the computation precision of the weight coefficients for relative amplitude preservation. Compared with the symmetrical methods, the nonsymmetrical method is more effective. In this paper, we describe several key steps of nonsymmetric pre-stack travel time calculation and present some test results using synthetic and real data.展开更多
The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network...The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices, which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance networking virtualizatiou. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state- of-the-art approaches for performance optimizations and improvements as well as the portability management for network I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides the performance improvements in network virtualization infrastructure.展开更多
基金This research was supported by the National Basic Research Program of China (Grant No. 2007CB209603), Key Project of the National Natural Science Foundation (Grant No. 40830424), State Key Laboratory of Geological Processes and Mineral Resources Geo-detection Laboratory of the Ministry of Education for their sponsorship (GPMR 200633, GDL0801).
文摘Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth migration velocity model. The traditional symmetrical travel time equation is derived based on the assumption of a layered model. It is difficult to achieve the desired effect of focusing in media with strong lateral variation. The nonsymmetrical travel time equation based on Lie algebra and a pseudo-differential operator contains a lateral velocity derivative which can improve the focusing capability even in strongly lateral variable media and also the computation precision of the weight coefficients for relative amplitude preservation. Compared with the symmetrical methods, the nonsymmetrical method is more effective. In this paper, we describe several key steps of nonsymmetric pre-stack travel time calculation and present some test results using synthetic and real data.
基金This work was supported by the National High Technology Research and Development 863 Program of China under Grant No. 2012AA010905, the National Natural Science Foundation of China under Grant Nos. 61272100 and 61202374, the Ministry of Education Major Project of China under Grant No. 313035, and the National Research Foundation (NRF) Singapore under its CREATE Program.
文摘The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices, which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance networking virtualizatiou. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state- of-the-art approaches for performance optimizations and improvements as well as the portability management for network I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides the performance improvements in network virtualization infrastructure.