The behavior of a water molecule entering carbon nanotubes (CNTs) is stud- ied. The Lennaxd-Jones potential function together with the continuum approximation is used to obtain the van der Waals interaction between ...The behavior of a water molecule entering carbon nanotubes (CNTs) is stud- ied. The Lennaxd-Jones potential function together with the continuum approximation is used to obtain the van der Waals interaction between a single-walled CNT (SWCNT) and a single water molecule. Three orientations are chosen for the water molecule as the center of mass is on the axis of nanotube. Extensive studies on the variations of force, energy, and velocity distributions axe performed by vaxying the nanotube radius and the orientations of the water molecule. The force and energy distributions are validated by those obtained from molecular dynamics (MD) simulations. The acceptance radius of the nanotube for sucking the water molecule inside is derived, in which the limit of the radius is specified so that the nanotube is favorable to absorb the water molecule. The velocities of a single water molecule entering CNTs axe calculated and the maximum entrance and the interior velocity for different orientations axe assigned and compared.展开更多
文摘The behavior of a water molecule entering carbon nanotubes (CNTs) is stud- ied. The Lennaxd-Jones potential function together with the continuum approximation is used to obtain the van der Waals interaction between a single-walled CNT (SWCNT) and a single water molecule. Three orientations are chosen for the water molecule as the center of mass is on the axis of nanotube. Extensive studies on the variations of force, energy, and velocity distributions axe performed by vaxying the nanotube radius and the orientations of the water molecule. The force and energy distributions are validated by those obtained from molecular dynamics (MD) simulations. The acceptance radius of the nanotube for sucking the water molecule inside is derived, in which the limit of the radius is specified so that the nanotube is favorable to absorb the water molecule. The velocities of a single water molecule entering CNTs axe calculated and the maximum entrance and the interior velocity for different orientations axe assigned and compared.