As for single mode symmetric step refractive index structure dielectric planar optical waveguide, when its output end is restricted, the diffractive field distribution is derived. It can be expressed as the convolutio...As for single mode symmetric step refractive index structure dielectric planar optical waveguide, when its output end is restricted, the diffractive field distribution is derived. It can be expressed as the convolution between the Dirac function and the Sinc and Lorenz functions. It is helpful to deepen the recognition of the restricted diffraction. The characteristic of the diffractive field is discussed. The variational curve of the full angle width at half maximum intensity of central bright fringe versus the half width of slit is presented by numerical calculation, and the fitting curve with the exponential function is close to it.展开更多
Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy ...Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy to fabricate, traditional diffraction grating suffers from multi-order diffraction contamination. On the other hand, sinusoidal amplitude grating has the nonharmonic diffraction property, but it is too difficult to fabricate, especially for x-ray application. A novel nonharmonic diffraction grating named random position rectangle grating(RPRG) is proposed in this paper. Theoretical analysis and experiment results show that the RPRG is both higher order diffraction suppressing and not difficult to fabricate. Additionally, it is highly efficient; its first order absolute theoretical diffraction efficiency reaches 4.1%. Our result shows that RPRG is a novel tool for radiation diagnosis and monochromation.展开更多
A detailed investigation of anisotropy of neutron diffraction intensity enhancement observed in α-LiIO-3 single crystal under a DC field was carried out on a Four-Circle Neutron Diffractometer installed at the BR<...A detailed investigation of anisotropy of neutron diffraction intensity enhancement observed in α-LiIO-3 single crystal under a DC field was carried out on a Four-Circle Neutron Diffractometer installed at the BR<sub>2</sub> reactor in Belgium and CIAE reactor.It was found that the intensity increase must be ascribed to small displacements of oxygen and iodine atoms rather than the explanation which is only based on changes in the defect of the crystal structure,since the movement of lithium atom to interstitial sites or holes in the crystal may cause displacement of the other atoms.展开更多
The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure t...The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure type, tetragonal space group P4/mbm and lattice constants are a = b = 12.6369(18) ? and c = 4.1378(8) ?. Crystal structure of Yb5Co4Ge10 composed of three-dimensional [Co4Ge12] network having five, six and eight membered rings. The three non-equivalent Yb atoms are sandwiched in three different channels created by the [Co4Ge12] network. Based on the bond length analysis from the crystallographic information, we confirmed that Yb1 and Yb2 atoms are in the trivalent magnetic state and Yb3 is in the divalent non-magnetic state.展开更多
A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectro- scopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes ...A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectro- scopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes on a substrate, whose radii are quasi-random, while their centers are regular. Analysis proves that its transmittance function across the grating bar is similar to that of sinusoidal transmission gratings. Simulation results show that the QRSPS can suppress higher-order diffraction effectively. And the QRSPS would still retain its characteristic of single order diffraction when we take the effect of X-ray penetration into account. These properties indicate that the QRSPS can be used in the soft X-ray spectra measurement.展开更多
One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respec...One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.展开更多
In this paper, we present a highly efficient structure determination pipeline software suite(X^2 DF) that is based on the "Parameter space screening" method, by combining the popular crystallographic structu...In this paper, we present a highly efficient structure determination pipeline software suite(X^2 DF) that is based on the "Parameter space screening" method, by combining the popular crystallographic structure determination programs and high-performance parallel computing. The phasing method employed in X^2 DF is based on the single-wavelength anomalous diffraction(SAD) theory. In the X^2 DF, the choice of crystallographic software, the input parameters to this software and the results display layout, are all parameters which users can select and screen automatically. Users may submit multiple structure determination jobs each time, and each job uses a slightly different set of input parameters or programs. Upon completion, the results of the calculation performed can be displayed, harvested, and analyzed by using the graphical user interface(GUI) of the system. We have applied the X^2 DF successfully to many cases including the cases that the structure solutions fail to be yielded by using manual approaches.展开更多
The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm ...The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources.展开更多
A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-wall...A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and for optical path-length balancing are needed. Bragg-angle diffractions are observed as strong optical extinction that is tunable with changing the angle of incidence. This device is important for the design of efficient filters, beam splitters, and photonic devices.展开更多
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ...In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.展开更多
An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge w...An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge was used as a physical model at a geometric scale of 1:125.Wind tunnel experiments were conducted at an incoming airflow speed of 10 m/s,and the Reynolds number was calculated as 2.3×104 using the test model height and wind speed.The surface pressure distribution was measured,and the aerodynamic force acting on the test model with and without the isolated slit was calculated by integrating the pressure result.It was found that the control using an isolated slit can dramatically decrease the fluctuating surface pressure distribution and aerodynamic force.An analysis on the power spectral density of the lift force revealed that the isolated slit accelerated vortex shedding.Moreover,high-speed particle image velocimetry was used to investigate the wake flow structure behind the test model.A vortex separated from the upper surface was pushed to a lower location and the wake flow structure was modified by the isolated slit.A proper orthogonal decomposition(POD)of the flow field showed that the first two POD modes in the controlled case contributed less energy than those in the uncontrolled case,indicating that more energy was transferred to higher modes,and small-scale vortices had more energy.A secondary instability structure was found in the wake flow for a nondimensional jet momentum coefficient J of 0.0667.展开更多
Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge ...Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.展开更多
An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscat...An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested.展开更多
We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing f...We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing fast Fourier transform,inverse fast Fourier transform and the nonlinear leastsquare fitting on the diffraction pattern taken by a camera,the DIP method can quickly return an analytic expression,whose period is used to calculate widths of single slits.By comparing the measured results by the DIP method and the successional difference(SD)method,we find that for a single slit whose width is 60372μm,the DIP method is more accurate.Experimental results show that for single slits with widths between 40μm and 160μm,the relative error of the DIP method is less than 2.78%.Also,the DIP method can be used to measure the diameter of filament and fibres online in real time.展开更多
In this research KCl, KCl:Mn, KCl:Ag and KCl:In single crystals have been grown by Czochralski method. X-ray diffraction confirms KCl single crystal formation. In this work also influence of mentioned impurities on th...In this research KCl, KCl:Mn, KCl:Ag and KCl:In single crystals have been grown by Czochralski method. X-ray diffraction confirms KCl single crystal formation. In this work also influence of mentioned impurities on the optical property of KCl single crystal has been studied by chemical etching. Then the hardness of these crystals have been measured by Vickers micro hardness. The result indicate the positive effect of the impurity on optical and mechanical properties.展开更多
Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by ...Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by the X-ray powder diffractometry(XRD). Then the specimen was distinguished single crystal from polycrystal by the use of the transmission electron microscope(TEM). The diffraction pattern of the specimen is neatly arranged diffraction spots, that verified the crystals were single crystals. The interplanar distance d calculated from diffraction spot is coincided with that of HAP’s JCPDS card. Moreover, crystal face angles calculated from crystal face index are coincided with the values by measuring on the pattern. The HAP crystals are needle-like in shape with about 3 μm in diameter and 180 μm in length. Most of the crystals are separate whiskers. Their length/diameter ratio ranges from 40 to 100. The average ratio is about 60.展开更多
Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography...Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography of a cleaved crystal surface is examined by scanning electron microscope (SEM). By x-ray powder diffraction (XRD) experiments using pure silicon as an internal standard, precise unit cell parameters (tetragonal at room temperature) are determined: a = 3.9606(4) A^°. (1 A^°=0.1 nm), c = 13.015(2) A^°. for BaFe1.96Ni0.04As2 and a = 3.9590(5) A^°, c = 13.024(1) A^°for BaFe2As2. DC magnetization and transport measurements are performed to check superconducting transition (Tc = 15 K for x = 0.04) and other subtle anomalies. For BaFe1.96Ni0.04As2 crystal, the resistance curve at normal state shows two distinct anomalies associated with spin and structure transitions, and its magnetization data above - 91 K exhibit a linear temperature dependence due to spin density wave (SDW) instability.展开更多
Non-linear optical materials find wide range of applications in the fields of opto-electronics, fiber optic communication, computer memory devices etc. Tris-Glycine Zinc Chloride (TGZC) is one of the NLO materials exh...Non-linear optical materials find wide range of applications in the fields of opto-electronics, fiber optic communication, computer memory devices etc. Tris-Glycine Zinc Chloride (TGZC) is one of the NLO materials exhibiting more efficiency. In the present study Tris-Glycine Zinc Chloride were grown is single crystal form using slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system with the space group Pbn21. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut off wavelength of 250 nm. The optical band gap is found to be 4.60 eV. The dependence of extinction coefficient (K) and refractive index (n) on the wavelength has also been reported. Force constants (k) were calculated using FTIR spectral analysis which shows higher values of k for COO and C=O stretching vibrations. The dielectric studies show that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures (35℃, 55℃, 75℃ and 95℃).展开更多
It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and in...It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.展开更多
The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by singl...The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by single crystal XRD. The optical absorption of the crystal was recorded using the UV-Vis-NIR spectrophotometer. The optical bandgap and optical constants of the material were determined by using absorption spectrum. The refractive index of the grown crystal has been determined using the Brewster angle method. The dielectric constant and dielectric loss were measured as a function of frequency and temperature for the grown crystal. Nonlinear optical properties were performed to confirm the SHG efficiency of the grown crystal. Hence, PTPT is an excellent NLO material with enhanced SHG efficiency required for important applications in the field of optoelectronic and photonics. This material exhibits NLO behaviour remarkably due to its better optical and dielectric properties.展开更多
基金Natural Science Foundation of Fujian Province(A0540001)The Program of the Science and Technology Depart ment of Fujian Province(K04022)
文摘As for single mode symmetric step refractive index structure dielectric planar optical waveguide, when its output end is restricted, the diffractive field distribution is derived. It can be expressed as the convolution between the Dirac function and the Sinc and Lorenz functions. It is helpful to deepen the recognition of the restricted diffraction. The characteristic of the diffractive field is discussed. The variational curve of the full angle width at half maximum intensity of central bright fringe versus the half width of slit is presented by numerical calculation, and the fitting curve with the exponential function is close to it.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375160)the National Science Instruments Major Project of China(Grant No.2012YQ130125)
文摘Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy to fabricate, traditional diffraction grating suffers from multi-order diffraction contamination. On the other hand, sinusoidal amplitude grating has the nonharmonic diffraction property, but it is too difficult to fabricate, especially for x-ray application. A novel nonharmonic diffraction grating named random position rectangle grating(RPRG) is proposed in this paper. Theoretical analysis and experiment results show that the RPRG is both higher order diffraction suppressing and not difficult to fabricate. Additionally, it is highly efficient; its first order absolute theoretical diffraction efficiency reaches 4.1%. Our result shows that RPRG is a novel tool for radiation diagnosis and monochromation.
文摘A detailed investigation of anisotropy of neutron diffraction intensity enhancement observed in α-LiIO-3 single crystal under a DC field was carried out on a Four-Circle Neutron Diffractometer installed at the BR<sub>2</sub> reactor in Belgium and CIAE reactor.It was found that the intensity increase must be ascribed to small displacements of oxygen and iodine atoms rather than the explanation which is only based on changes in the defect of the crystal structure,since the movement of lithium atom to interstitial sites or holes in the crystal may cause displacement of the other atoms.
文摘The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure type, tetragonal space group P4/mbm and lattice constants are a = b = 12.6369(18) ? and c = 4.1378(8) ?. Crystal structure of Yb5Co4Ge10 composed of three-dimensional [Co4Ge12] network having five, six and eight membered rings. The three non-equivalent Yb atoms are sandwiched in three different channels created by the [Co4Ge12] network. Based on the bond length analysis from the crystallographic information, we confirmed that Yb1 and Yb2 atoms are in the trivalent magnetic state and Yb3 is in the divalent non-magnetic state.
基金Project supported by the National Key Scientific Instruments and Equipments Development of Special Item,China(Grant No.2012YQ130125)the National Natural Science Foundation of China(Grant No.11375160)
文摘A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectro- scopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes on a substrate, whose radii are quasi-random, while their centers are regular. Analysis proves that its transmittance function across the grating bar is similar to that of sinusoidal transmission gratings. Simulation results show that the QRSPS can suppress higher-order diffraction effectively. And the QRSPS would still retain its characteristic of single order diffraction when we take the effect of X-ray penetration into account. These properties indicate that the QRSPS can be used in the soft X-ray spectra measurement.
基金Project supported by the Innovation Foundation of the Chinese Academy of Sciences and by the National Basic Research Program of China(Grant No.2002CB713801)
文摘One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.
文摘In this paper, we present a highly efficient structure determination pipeline software suite(X^2 DF) that is based on the "Parameter space screening" method, by combining the popular crystallographic structure determination programs and high-performance parallel computing. The phasing method employed in X^2 DF is based on the single-wavelength anomalous diffraction(SAD) theory. In the X^2 DF, the choice of crystallographic software, the input parameters to this software and the results display layout, are all parameters which users can select and screen automatically. Users may submit multiple structure determination jobs each time, and each job uses a slightly different set of input parameters or programs. Upon completion, the results of the calculation performed can be displayed, harvested, and analyzed by using the graphical user interface(GUI) of the system. We have applied the X^2 DF successfully to many cases including the cases that the structure solutions fail to be yielded by using manual approaches.
基金Project supported by the National Science Instruments Major Project of China(Grant No.2012YQ130125)the National Natural Science Foundation of China(Grant Nos.11405159,11375161,and 11174259)the Science and Technology on Plasma Physics Laboratory at CAEP(Grant No.9140C680302130C68242)
文摘The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse With the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources.
文摘A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and for optical path-length balancing are needed. Bragg-angle diffractions are observed as strong optical extinction that is tunable with changing the angle of incidence. This device is important for the design of efficient filters, beam splitters, and photonic devices.
基金supported by The AMADA FOUNDATION[grant number AF-2022030-B3]JSPS KAKENHI[grant numbers JP16K05961 and JP19K04065]。
文摘In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.
基金Projects(51978222,51722805,U2106222) supported by the National Natural Science Foundation of ChinaProject(HIT.BRETIV 201803) supported by the Fundamental Research Funds for the Central Universities,China。
文摘An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge was used as a physical model at a geometric scale of 1:125.Wind tunnel experiments were conducted at an incoming airflow speed of 10 m/s,and the Reynolds number was calculated as 2.3×104 using the test model height and wind speed.The surface pressure distribution was measured,and the aerodynamic force acting on the test model with and without the isolated slit was calculated by integrating the pressure result.It was found that the control using an isolated slit can dramatically decrease the fluctuating surface pressure distribution and aerodynamic force.An analysis on the power spectral density of the lift force revealed that the isolated slit accelerated vortex shedding.Moreover,high-speed particle image velocimetry was used to investigate the wake flow structure behind the test model.A vortex separated from the upper surface was pushed to a lower location and the wake flow structure was modified by the isolated slit.A proper orthogonal decomposition(POD)of the flow field showed that the first two POD modes in the controlled case contributed less energy than those in the uncontrolled case,indicating that more energy was transferred to higher modes,and small-scale vortices had more energy.A secondary instability structure was found in the wake flow for a nondimensional jet momentum coefficient J of 0.0667.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574272)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A040014)
文摘Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.
文摘An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested.
基金National Natural Science Foundtion of China(No.11435011)Young Teachers Fund of Nanjing Institute of Technology,China(Nos.QKJ201907 and QKJ201908)+2 种基金China Scholarship Council(No.201708320319)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYZZ16-0349)Qing Lan Project of Jiangsu Province,China。
文摘We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing fast Fourier transform,inverse fast Fourier transform and the nonlinear leastsquare fitting on the diffraction pattern taken by a camera,the DIP method can quickly return an analytic expression,whose period is used to calculate widths of single slits.By comparing the measured results by the DIP method and the successional difference(SD)method,we find that for a single slit whose width is 60372μm,the DIP method is more accurate.Experimental results show that for single slits with widths between 40μm and 160μm,the relative error of the DIP method is less than 2.78%.Also,the DIP method can be used to measure the diameter of filament and fibres online in real time.
文摘In this research KCl, KCl:Mn, KCl:Ag and KCl:In single crystals have been grown by Czochralski method. X-ray diffraction confirms KCl single crystal formation. In this work also influence of mentioned impurities on the optical property of KCl single crystal has been studied by chemical etching. Then the hardness of these crystals have been measured by Vickers micro hardness. The result indicate the positive effect of the impurity on optical and mechanical properties.
文摘Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by the X-ray powder diffractometry(XRD). Then the specimen was distinguished single crystal from polycrystal by the use of the transmission electron microscope(TEM). The diffraction pattern of the specimen is neatly arranged diffraction spots, that verified the crystals were single crystals. The interplanar distance d calculated from diffraction spot is coincided with that of HAP’s JCPDS card. Moreover, crystal face angles calculated from crystal face index are coincided with the values by measuring on the pattern. The HAP crystals are needle-like in shape with about 3 μm in diameter and 180 μm in length. Most of the crystals are separate whiskers. Their length/diameter ratio ranges from 40 to 100. The average ratio is about 60.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601002)the National Natural Science Foundation of China(Grant Nos.10734120 and 10874211)
文摘Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography of a cleaved crystal surface is examined by scanning electron microscope (SEM). By x-ray powder diffraction (XRD) experiments using pure silicon as an internal standard, precise unit cell parameters (tetragonal at room temperature) are determined: a = 3.9606(4) A^°. (1 A^°=0.1 nm), c = 13.015(2) A^°. for BaFe1.96Ni0.04As2 and a = 3.9590(5) A^°, c = 13.024(1) A^°for BaFe2As2. DC magnetization and transport measurements are performed to check superconducting transition (Tc = 15 K for x = 0.04) and other subtle anomalies. For BaFe1.96Ni0.04As2 crystal, the resistance curve at normal state shows two distinct anomalies associated with spin and structure transitions, and its magnetization data above - 91 K exhibit a linear temperature dependence due to spin density wave (SDW) instability.
文摘Non-linear optical materials find wide range of applications in the fields of opto-electronics, fiber optic communication, computer memory devices etc. Tris-Glycine Zinc Chloride (TGZC) is one of the NLO materials exhibiting more efficiency. In the present study Tris-Glycine Zinc Chloride were grown is single crystal form using slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system with the space group Pbn21. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut off wavelength of 250 nm. The optical band gap is found to be 4.60 eV. The dependence of extinction coefficient (K) and refractive index (n) on the wavelength has also been reported. Force constants (k) were calculated using FTIR spectral analysis which shows higher values of k for COO and C=O stretching vibrations. The dielectric studies show that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures (35℃, 55℃, 75℃ and 95℃).
文摘It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.
文摘The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by single crystal XRD. The optical absorption of the crystal was recorded using the UV-Vis-NIR spectrophotometer. The optical bandgap and optical constants of the material were determined by using absorption spectrum. The refractive index of the grown crystal has been determined using the Brewster angle method. The dielectric constant and dielectric loss were measured as a function of frequency and temperature for the grown crystal. Nonlinear optical properties were performed to confirm the SHG efficiency of the grown crystal. Hence, PTPT is an excellent NLO material with enhanced SHG efficiency required for important applications in the field of optoelectronic and photonics. This material exhibits NLO behaviour remarkably due to its better optical and dielectric properties.