Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses ...Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11974007,12074146,12074142,61575077,12374265,11947243,91850114,and 11774131)the Natural Science Foundation of Jilin Province of China(Grant No.20220101016JC).
文摘Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.