Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known a...Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging,especially in goats.Therefore,the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution.Results For the first time,we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn,young and aging goats,and identified nine ovarian cell types with distinct gene-expression signatures.Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes,such as Wnt beta-catenin signalling was enriched in germ cells,whereas ovarian steroidogenesis was enriched in granulosa cells(GCs).Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system,oxidative phosphorylation,and apoptosis.Subsequently,we identified a series of dynamic genes,such as AMH,CRABP2,THBS1 and TIMP1,which determined the fate of GCs.Additionally,FOXO1,SOX4,and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging.Conclusions This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell typespecific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.展开更多
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ...Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell tr...Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.展开更多
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technolo...Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.展开更多
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ...Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.展开更多
Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the im...Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the immune microenvironment has the potential to inform the development of therapeutic strategies for fungal infections.Methods:The study analyzed individual immune cell profiles in peripheral blood mononuclear cells from Candida albicans-infected mice and healthy control mice using single-cell transcriptomics,fluorescence quantitative PCR,and Western blotting.We investigated intergroup differences in the dynamics of immune cell subpopulation infiltration,pathway enrichment,and differentiation during Candida albicans infection.Results:Our findings indicate that infiltration of CD4^(+)naive cells,regulatory T(Treg)cells,and Microtubules(MT)-associated cells increased after infection,along with impaired T cell activity.Notably,CD4^(+)T cells and plasma cells were enhanced after infection,suggesting that antibody production is dependent on T cells.In addition,we screened 6 hub genes,transcription factor forkhead box protein 3(Foxp3),cytotoxic T-lymphocyte associated protein 4(CTLA4),Interleukin 2 Receptor Subunit Beta(Il2rb),Cd28,C-C Motif Chemokine Ligand 5(Ccl5),and Cd27 for alterations associated with CD4^(+)T cell differentiation.Conclusions:These results provide a comprehensive immunological landscape of the mechanisms of Candida albicans infection and greatly advance our understanding of adaptive immunity in fungal infections.展开更多
The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding...The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity,functional heterogeneity,and their importance in intestinal tract development and disease.Although such profiling has been extensively conducted in humans and mice,the single-cell gene expression landscape of the pig cecum remains unexplored.Here,single-cell RNA sequencing was performed on 45572 cells obtained from seven cecal samples in pigs at four different developmental stages(days(D)30,42,150,and 730).Analysis revealed 12 major cell types and 38 subtypes,as well as their distinctive genes,transcription factors,and regulons,many of which were conserved in humans.An increase in the relative proportions of CD8^(+)T and Granzyme A(low expression)natural killer T cells(GZMA^(low)NKT)cells and a decrease in the relative proportions of epithelial stem cells,Tregs,RHEX^(+)T cells,and plasmacytoid dendritic cells(pDCs)were noted across the developmental stages.Moreover,the post-weaning period exhibited an up-regulation in mitochondrial genes,COX2 and ND2,as well as genes involved in immune activation in multiple cell types.Cell-cell crosstalk analysis indicated that IBP6^(+)fibroblasts were the main signal senders at D30,whereas IBP6^(−)fibroblasts assumed this role at the other stages.NKT cells established interactions with epithelial cells and IBP6^(+)fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs.This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.展开更多
Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and parti...Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.展开更多
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ...Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.展开更多
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t...BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.展开更多
Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical...Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.展开更多
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ...High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.展开更多
Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomodulatory drugs on th...Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomodulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various immune cells remain limited.This study aimed to investigate the protective effects and underlying mechanism of artesunate(ART)on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing(scRNA-seq)and experimental validations.The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis.ART could restore neutrophils’chemotaxis and immune function in the septic spleen.It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis.ART also promoted the differentiation and activity of splenic B cells in mice with sepsis.These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host.Overall,this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis,thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis.展开更多
Triptolide is a key active component of the widely used traditional Chinese herb medicine Tripterygium wilfordii Hook.F.Although triptolide exerts multiple biological activities and shows promising efficacy in treatin...Triptolide is a key active component of the widely used traditional Chinese herb medicine Tripterygium wilfordii Hook.F.Although triptolide exerts multiple biological activities and shows promising efficacy in treating inflammatory-related diseases,its well-known safety issues,especially reproductive toxicity has aroused concerns.However,a comprehensive dissection of triptolide-associated testicular toxicity at single cell resolution is still lacking.Here,we observed testicular toxicity after 14 days of triptolide exposure,and then constructed a single-cell transcriptome map of 59,127 cells in mouse testes upon triptolide-treatment.We identified triptolide-associated shared and cell-type specific differentially expressed genes,enriched pathways,and ligand-receptor pairs in different cell types of mouse testes.In addition to the loss of germ cells,our results revealed increased macrophages and the inflammatory response in triptolide-treated mouse testes,suggesting a critical role of inflammation in triptolide-induced testicular injury.We also found increased reactive oxygen species(ROS)signaling and downregulated pathways associated with spermatid development in somatic cells,especially Leydig and Sertoli cells,in triptolide-treated mice,indicating that dysregulation of these signaling pathways may contribute to triptolide-induced testicular toxicity.Overall,our high-resolution single-cell landscape offers comprehensive information regarding triptolide-associated gene expression profiles in major cell types of mouse testes at single cell resolution,providing an invaluable resource for understanding the underlying mechanism of triptolide-associated testicular injury and additional discoveries of therapeutic targets of triptolide-induced male reproductive toxicity.展开更多
Tbx18,Wt1,and Tcf21 have been identified as epicardial markers during the early embryonic stage.However,the gene markers of mature epicardial cells remain unclear.Single-cell transcriptomic analysis was performed with...Tbx18,Wt1,and Tcf21 have been identified as epicardial markers during the early embryonic stage.However,the gene markers of mature epicardial cells remain unclear.Single-cell transcriptomic analysis was performed with the Seurat,Monocle,and CellphoneDB packages in R software with standard procedures.Spatial transcriptomics was performed on chilled Visium Tissue Optimization Slides(10x Genomics)and Visium Spatial Gene Expression Slides(10x Genomics).Spatial transcriptomics analysis was performed with Space Ranger software and R software.Immunofluorescence,whole-mount RNA in situ hybridization and X-gal staining were performed to validate the analysis results.Spatial transcriptomics analysis revealed distinct transcriptional profiles and functions between epicardial tissue and non-epicardial tissue.Several gene markers specific to postnatal epicardial tissue were identified,including Msln,C3,Efemp1,and Upk3b.Single-cell transcriptomic analysis revealed that cardiac cells from wildtype mouse hearts(from embryonic day 9.5 to postnatal day 9)could be categorized into six major cell types,which included epicardial cells.Throughout epicardial development,Wt1,Tbx18,and Upk3b were consistently expressed,whereas genes including Msln,C3,and Efemp1 exhibited increased expression during the mature stages of development.Pseudotime analysis further revealed two epicardial cell fates during maturation.Moreover,Upk3b,Msln,Efemp1,and C3 positive epicardial cells were enriched in extracellular matrix signaling.Our results suggested Upk3b,Efemp1,Msln,C3,and other genes were mature epicardium markers.Extracellular matrix signaling was found to play a critical role in the mature epicardium,thus suggesting potential therapeutic targets for heart regeneration in future clinical practice.展开更多
Background Sustained yet intractable immunosuppression is commonly observed in septic patients,resulting in aggravated clinical outcomes.However,due to the substantial heterogeneity within septic patients,precise indi...Background Sustained yet intractable immunosuppression is commonly observed in septic patients,resulting in aggravated clinical outcomes.However,due to the substantial heterogeneity within septic patients,precise indicators in deciphering clinical trajectories and immunological alterations for septic patients remain largely lacking.Methods We adopted cross-species,single-cell RNA sequencing(scRNA-seq)analysis based on two published datasets containing circulating immune cell profile of septic patients as well as immune cell atlas of murine model of sepsis.Flow cytometry,laser scanning confocal microscopy(LSCM)imaging and Western blotting were applied to identify the presence of S100A9^(+)monocytes at protein level.To interrogate the immunosuppressive function of this subset,splenic monocytes isolated from septic wild-type or S100a9^(–/–)mice were co-cultured with naive CD4^(+)T cells,followed by proliferative assay.Pharmacological inhibition of S100A9 was implemented using Paquinimod via oral gavage.Results scRNA-seq analysis of human sepsis revealed substantial heterogeneity in monocyte compartments following the onset of sepsis,for which distinct monocyte subsets were enriched in disparate subclusters of septic patients.We identified a unique monocyte subset characterized by high expression of S100A family genes and low expression of human leukocyte antigen DR(HLA-DR),which were prominently enriched in septic patients and might exert immunosuppressive function.By combining single-cell transcriptomics of murine model of sepsis with in vivo experiments,we uncovered a similar subtype of monocyte significantly associated with late sepsis and immunocompromised status of septic mice,corresponding to HLA-DR^(low)S100A^(high)monocytes in human sepsis.Moreover,we found that S100A9^(+)monocytes exhibited profound immunosuppressive function on CD4^(+)T cell immune response and blockade of S100A9 using Paquinimod could partially reverse sepsis-induced immunosuppression.Conclusions This study identifies HLA-DR^(low)S100A^(high)monocytes correlated with immunosuppressive state upon septic challenge,inhibition of which can markedly mitigate sepsis-induced immune depression,thereby providing a novel therapeutic strategy for the management of sepsis.展开更多
Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion(II/R)injury by single-cell RNA sequencing.For enterocyte cells,11 subclusters were found,in which enterocyte clus...Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion(II/R)injury by single-cell RNA sequencing.For enterocyte cells,11 subclusters were found,in which enterocyte cluster 1(EC1),enterocyte cluster 3(EC3),and enterocyte cluster 8(EC8)were newly discovered cells in ischemia 45 min/reperfusion 720 min(I 45 min/R 720 min)group.EC1 and EC3 played roles in digestion and absorption,and EC8 played a role in cell junctions.For TA cells,after ischemia 45 min/reperfusion 90 min(I 45 min/R 90 min),many TA cells at the stage of proliferation were identified.For Paneth cells,Paneth cluster 3 was observed in the resting state of normal jejunum.After I 45 min/R 90 min,three new subsets were found,in which Paneth cluster 1 had good antigen presentation activity.The main functions of goblet cells were to synthesize and secrete mucus,and a novel subcluster(goblet cluster 5)with highly proliferative ability was discovered in I 45 min/R 90 min group.As a major part of immune system,the changes in T cells with important roles were clarified.Notably,enterocyte cells secreted Guca2b to interact with Gucy2c receptor on the membranes of stem cells,TA cells,Paneth cells,and goblet cells to elicit intercellular communication.One marker known as glutathione S-transferase mu 3(GSTM3)affected intestinal mucosal barrier function by adjusting mitogen-activated protein kinases(MAPK)signaling during II/R injury.The data on the heterogeneity of intestinal cells,cellular communication and the mechanism of GSTM3 provide a cellular basis for treating II/R injury.展开更多
The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-se...The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.展开更多
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell reso...Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.展开更多
基金supported by the National Key Research and Development Program of China(2022YFD1300202)the Technology Innovation and Application Development Special Project of Chongqing(cstc2021jscx-gksb X0008)+2 种基金the National Natural Science Foundation of China(32102623)the National Natural Science Foundation of Chongqing(cstc2021jcyj-msxm X0875)the Ph D Train Scientific Research Project of Chongqing(CSTB2022BSXM-JCX0002)。
文摘Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging,especially in goats.Therefore,the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution.Results For the first time,we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn,young and aging goats,and identified nine ovarian cell types with distinct gene-expression signatures.Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes,such as Wnt beta-catenin signalling was enriched in germ cells,whereas ovarian steroidogenesis was enriched in granulosa cells(GCs).Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system,oxidative phosphorylation,and apoptosis.Subsequently,we identified a series of dynamic genes,such as AMH,CRABP2,THBS1 and TIMP1,which determined the fate of GCs.Additionally,FOXO1,SOX4,and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging.Conclusions This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell typespecific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.
基金partially supported by the Natural Science Foundation of Zhejiang Province(Award number:D21C170001)the National Natural Science Foundation of China(Award number:31973000)。
文摘Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
基金financially supported by the“STI2030-Major Project”of China(2023ZD04072)the National Key Research and Development Program of China(2021YFA1300400)+1 种基金the National Natural Science Foundation of China(32372099 and 32188102)the Young Science and Technology Talents(He Jian)in Hunan Province(2022RC1015)。
文摘Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.
基金supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI)the Ministry of Health&Welfare,Republic of Korea (HR22C1734)+2 种基金the National Research Foundation (NRF) of Korea (2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)(to SBL)the NRF of Korea (2022R1C1C1005741 and RS-2023-00217595)the new faculty research fund of Ajou University School of Medicine (to EJL)。
文摘Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
基金supported by National Key Research and Development Program of China(2022YFD1302201,2023YFF1000904)the National Natural Science Foundation of China(32072806,32372970)+2 种基金Key Technologies Demonstration of Animal Husbandry in Shaanxi Province(20221086,20230978)Inner Mongolia Autonomous Region Competition Leaders(2022JBGS0025)Xinjian Ugur Autonouous Region Scientific Research and Innovation Platform Construction Project“State Key Laboratory of Genetic Improvement and Germplasm”。
文摘Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.
基金supported by National Key Research and Development Program of China(2021YFC2301405)Chongqing Talent Program(No.CQYC202003220).
文摘Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the immune microenvironment has the potential to inform the development of therapeutic strategies for fungal infections.Methods:The study analyzed individual immune cell profiles in peripheral blood mononuclear cells from Candida albicans-infected mice and healthy control mice using single-cell transcriptomics,fluorescence quantitative PCR,and Western blotting.We investigated intergroup differences in the dynamics of immune cell subpopulation infiltration,pathway enrichment,and differentiation during Candida albicans infection.Results:Our findings indicate that infiltration of CD4^(+)naive cells,regulatory T(Treg)cells,and Microtubules(MT)-associated cells increased after infection,along with impaired T cell activity.Notably,CD4^(+)T cells and plasma cells were enhanced after infection,suggesting that antibody production is dependent on T cells.In addition,we screened 6 hub genes,transcription factor forkhead box protein 3(Foxp3),cytotoxic T-lymphocyte associated protein 4(CTLA4),Interleukin 2 Receptor Subunit Beta(Il2rb),Cd28,C-C Motif Chemokine Ligand 5(Ccl5),and Cd27 for alterations associated with CD4^(+)T cell differentiation.Conclusions:These results provide a comprehensive immunological landscape of the mechanisms of Candida albicans infection and greatly advance our understanding of adaptive immunity in fungal infections.
基金supported by the National Natural Science Foundation of China(31790410,32160781)。
文摘The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity,functional heterogeneity,and their importance in intestinal tract development and disease.Although such profiling has been extensively conducted in humans and mice,the single-cell gene expression landscape of the pig cecum remains unexplored.Here,single-cell RNA sequencing was performed on 45572 cells obtained from seven cecal samples in pigs at four different developmental stages(days(D)30,42,150,and 730).Analysis revealed 12 major cell types and 38 subtypes,as well as their distinctive genes,transcription factors,and regulons,many of which were conserved in humans.An increase in the relative proportions of CD8^(+)T and Granzyme A(low expression)natural killer T cells(GZMA^(low)NKT)cells and a decrease in the relative proportions of epithelial stem cells,Tregs,RHEX^(+)T cells,and plasmacytoid dendritic cells(pDCs)were noted across the developmental stages.Moreover,the post-weaning period exhibited an up-regulation in mitochondrial genes,COX2 and ND2,as well as genes involved in immune activation in multiple cell types.Cell-cell crosstalk analysis indicated that IBP6^(+)fibroblasts were the main signal senders at D30,whereas IBP6^(−)fibroblasts assumed this role at the other stages.NKT cells established interactions with epithelial cells and IBP6^(+)fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs.This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.
基金funded by the National Natural Science Foundation of China(32170495)the Emergency Project for Risk Assessment of Areca Nut(Key Project of Department of Agriculture and Rural Affairs of Hainan Province&Wanning Municipal People’s Government)。
文摘Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.
基金Supported by Shenzhen Science and Technology Program,No.GJHZ20210705142543019Guangdong Basic and Applied Basic Research Foundation,No.2023A1515220074.
文摘Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.
文摘BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.
基金supported by the National Natural Science Foundation of China(82200725)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)+4 种基金the Fundamental Research Funds for the Central Universities(226-2023-00114,226-2022-00226,and 226-2023-00059)the Key Program of National Natural Science Foundation of China(81930016)the Key Research and Development Program of China(2021YFA1100500)the Major Research Plan of the National Natural Science Foundation of China(92159202)the Ningbo Top Medical and Health Research Program(2022030309).
文摘Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.
基金supported by the National Natural Science Foundation of China,No.82371051(to DW)the Natural Science Foundation of Beijing,No.7212092(to DW)+1 种基金the Capital’s Funds for Health Improvement and Research,No.2022-2-5041(to DW)the Fund of Science and Technology Development of Beijing Rehabilitation Hospital,Capital Medical University,No.2021R-001(to YL).
文摘High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
基金support by the Establishment of Sino-Austria“Belt and Road”Joint Laboratory on Traditional Chinese Medicine for Severe Infectious Diseases and Joint Research,China(Grant No.:2020YFE0205100)the National Key Research and Development Program of China(Grant Nos.:2020YFA0908000,2022YFC2303600)+9 种基金the Distinguished Expert Project of Sichuan Province Tianfu Scholar(Grant No.:CW202002)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine,China(Grant No.:ZYYCXTD-C-202002)the National Natural Science Foundation of China(Grant Nos.:82141001,82274182,82074098,82173914)the China Academy of Chinese Medical Sciences(CACMS)Innovation Fund,China(Grant Nos.:CI2021A05101,CI2021A05104)the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(Grant No.:CI2021B014)the Science and Technology Foundation of Shenzhen,China(Grant No.:JCYJ20210324115800001)the Science and Technology Foundation of Shenzhen,China(Shenzhen Clinical Medical Research Center for Geriatric Diseases),the National Key R&D Program of China Key Projects for International Cooperation on Science,Technology and Innovation(Grant No.:2020YFE0205100)the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ14-YQ-050,ZZ14-YQ-051,ZZ14-YQ-052,ZZ14-FL-002,ZZ14-ND-010,ZZ15-ND-10),Shenzhen Governmental Sustainable Development Fund,China(Grant No.:KCXFZ20201221173612034)Shenzhen key Laboratory of Kidney Diseases,China(Grant No.:ZDSYS201504301616234)Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties,China(Grant No.:SZGSP001).
文摘Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomodulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various immune cells remain limited.This study aimed to investigate the protective effects and underlying mechanism of artesunate(ART)on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing(scRNA-seq)and experimental validations.The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis.ART could restore neutrophils’chemotaxis and immune function in the septic spleen.It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis.ART also promoted the differentiation and activity of splenic B cells in mice with sepsis.These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host.Overall,this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis,thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis.
基金supported by grants from the National Key Research and Development Program of China(Grant Nos.:2020YFA0908000,2022YFC2303600)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-C-202002)+7 种基金the National Natural Science Foundation of China(Grant Nos.:82201786,82141001,82274182,82074098,82173914)the CACMS Innovation Fund(Grant Nos.:CI2021A05101,CI2021A05104)the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(Grant No.:CI2021B014)the Science and Technology Foundation of Shenzhen(Grant Nos.:JCYJ20220818102613029,JCYJ20210324114014039,JCYJ20210324115800001)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.:2020A1515110549,2021A1515110646)the Science and Technology Foundation of Shenzhen(Shenzhen Clinical Medical Research Center for Geriatric Diseases)the National Key R&D Program of China Key projects for international cooperation on science,technology and innovation(Grant No.:2020YFE0205100)and the Fundamental Research Funds for the Central Public Welfare Research Institutes(Grant Nos.:ZZ14-YQ-050,ZZ14-YQ-051,ZZ14-YQ-052,ZZ14-FL-002,ZZ14-ND-010,ZZ15-ND-10).
文摘Triptolide is a key active component of the widely used traditional Chinese herb medicine Tripterygium wilfordii Hook.F.Although triptolide exerts multiple biological activities and shows promising efficacy in treating inflammatory-related diseases,its well-known safety issues,especially reproductive toxicity has aroused concerns.However,a comprehensive dissection of triptolide-associated testicular toxicity at single cell resolution is still lacking.Here,we observed testicular toxicity after 14 days of triptolide exposure,and then constructed a single-cell transcriptome map of 59,127 cells in mouse testes upon triptolide-treatment.We identified triptolide-associated shared and cell-type specific differentially expressed genes,enriched pathways,and ligand-receptor pairs in different cell types of mouse testes.In addition to the loss of germ cells,our results revealed increased macrophages and the inflammatory response in triptolide-treated mouse testes,suggesting a critical role of inflammation in triptolide-induced testicular injury.We also found increased reactive oxygen species(ROS)signaling and downregulated pathways associated with spermatid development in somatic cells,especially Leydig and Sertoli cells,in triptolide-treated mice,indicating that dysregulation of these signaling pathways may contribute to triptolide-induced testicular toxicity.Overall,our high-resolution single-cell landscape offers comprehensive information regarding triptolide-associated gene expression profiles in major cell types of mouse testes at single cell resolution,providing an invaluable resource for understanding the underlying mechanism of triptolide-associated testicular injury and additional discoveries of therapeutic targets of triptolide-induced male reproductive toxicity.
基金supported by grants from the National Natural Science Foundation of China(Grant No.:82270281)Chongqing Medical University Program for Youth Innovation in Future Medicine(Grant No.:W0133)+2 种基金Senior Medical Talents Program of Chongqing for Young and Middle-aged,China(Program No.:JianlinDu[2022])Postdoctoral Research Funding of the Second Affiliated Hospital of Chongqing Medical University,China(Grant No.:rsc-postdoctor114)and Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University,China(Program No.:kryc-gg-2102).
文摘Tbx18,Wt1,and Tcf21 have been identified as epicardial markers during the early embryonic stage.However,the gene markers of mature epicardial cells remain unclear.Single-cell transcriptomic analysis was performed with the Seurat,Monocle,and CellphoneDB packages in R software with standard procedures.Spatial transcriptomics was performed on chilled Visium Tissue Optimization Slides(10x Genomics)and Visium Spatial Gene Expression Slides(10x Genomics).Spatial transcriptomics analysis was performed with Space Ranger software and R software.Immunofluorescence,whole-mount RNA in situ hybridization and X-gal staining were performed to validate the analysis results.Spatial transcriptomics analysis revealed distinct transcriptional profiles and functions between epicardial tissue and non-epicardial tissue.Several gene markers specific to postnatal epicardial tissue were identified,including Msln,C3,Efemp1,and Upk3b.Single-cell transcriptomic analysis revealed that cardiac cells from wildtype mouse hearts(from embryonic day 9.5 to postnatal day 9)could be categorized into six major cell types,which included epicardial cells.Throughout epicardial development,Wt1,Tbx18,and Upk3b were consistently expressed,whereas genes including Msln,C3,and Efemp1 exhibited increased expression during the mature stages of development.Pseudotime analysis further revealed two epicardial cell fates during maturation.Moreover,Upk3b,Msln,Efemp1,and C3 positive epicardial cells were enriched in extracellular matrix signaling.Our results suggested Upk3b,Efemp1,Msln,C3,and other genes were mature epicardium markers.Extracellular matrix signaling was found to play a critical role in the mature epicardium,thus suggesting potential therapeutic targets for heart regeneration in future clinical practice.
基金supported by the Key Project of National Natural Science Foundation of China(82130062,82241062 and 81930057)the National Key Research and Development Program of China(2022YFA1104604)+1 种基金the Key Project of Military Medical Innovation Program of Chinese PLA(18CXZ026 and BLJ18J006)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-076)。
文摘Background Sustained yet intractable immunosuppression is commonly observed in septic patients,resulting in aggravated clinical outcomes.However,due to the substantial heterogeneity within septic patients,precise indicators in deciphering clinical trajectories and immunological alterations for septic patients remain largely lacking.Methods We adopted cross-species,single-cell RNA sequencing(scRNA-seq)analysis based on two published datasets containing circulating immune cell profile of septic patients as well as immune cell atlas of murine model of sepsis.Flow cytometry,laser scanning confocal microscopy(LSCM)imaging and Western blotting were applied to identify the presence of S100A9^(+)monocytes at protein level.To interrogate the immunosuppressive function of this subset,splenic monocytes isolated from septic wild-type or S100a9^(–/–)mice were co-cultured with naive CD4^(+)T cells,followed by proliferative assay.Pharmacological inhibition of S100A9 was implemented using Paquinimod via oral gavage.Results scRNA-seq analysis of human sepsis revealed substantial heterogeneity in monocyte compartments following the onset of sepsis,for which distinct monocyte subsets were enriched in disparate subclusters of septic patients.We identified a unique monocyte subset characterized by high expression of S100A family genes and low expression of human leukocyte antigen DR(HLA-DR),which were prominently enriched in septic patients and might exert immunosuppressive function.By combining single-cell transcriptomics of murine model of sepsis with in vivo experiments,we uncovered a similar subtype of monocyte significantly associated with late sepsis and immunocompromised status of septic mice,corresponding to HLA-DR^(low)S100A^(high)monocytes in human sepsis.Moreover,we found that S100A9^(+)monocytes exhibited profound immunosuppressive function on CD4^(+)T cell immune response and blockade of S100A9 using Paquinimod could partially reverse sepsis-induced immunosuppression.Conclusions This study identifies HLA-DR^(low)S100A^(high)monocytes correlated with immunosuppressive state upon septic challenge,inhibition of which can markedly mitigate sepsis-induced immune depression,thereby providing a novel therapeutic strategy for the management of sepsis.
文摘Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion(II/R)injury by single-cell RNA sequencing.For enterocyte cells,11 subclusters were found,in which enterocyte cluster 1(EC1),enterocyte cluster 3(EC3),and enterocyte cluster 8(EC8)were newly discovered cells in ischemia 45 min/reperfusion 720 min(I 45 min/R 720 min)group.EC1 and EC3 played roles in digestion and absorption,and EC8 played a role in cell junctions.For TA cells,after ischemia 45 min/reperfusion 90 min(I 45 min/R 90 min),many TA cells at the stage of proliferation were identified.For Paneth cells,Paneth cluster 3 was observed in the resting state of normal jejunum.After I 45 min/R 90 min,three new subsets were found,in which Paneth cluster 1 had good antigen presentation activity.The main functions of goblet cells were to synthesize and secrete mucus,and a novel subcluster(goblet cluster 5)with highly proliferative ability was discovered in I 45 min/R 90 min group.As a major part of immune system,the changes in T cells with important roles were clarified.Notably,enterocyte cells secreted Guca2b to interact with Gucy2c receptor on the membranes of stem cells,TA cells,Paneth cells,and goblet cells to elicit intercellular communication.One marker known as glutathione S-transferase mu 3(GSTM3)affected intestinal mucosal barrier function by adjusting mitogen-activated protein kinases(MAPK)signaling during II/R injury.The data on the heterogeneity of intestinal cells,cellular communication and the mechanism of GSTM3 provide a cellular basis for treating II/R injury.
基金supported by the National Key Research Development Program of China(2021YFA1301203)the National Natural Science Foundation of China(82103031,82103918,81973408)+6 种基金the Clinical Research Incubation Project,West China Hospital,Sichuan University(22HXFH019)the China Postdoctoral Science Foundation(2019 M653416)the International Cooperation Project of Chengdu Municipal Science and Technology Bureau(2020-GH02-00017-HZ)the“1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University”(ZYJC18035,ZYJC18025,ZYYC20003,ZYJC18003)the GIST Research Institute(GRI)IIBR grants funded by the GISTthe National Research Foundation of Korea funded by the Korean government(MSIP)(2019R1C1C1005403,2019R1A4A1028802 and2021M3H9A2097520)the Post-Doctor Research Project,West China Hospital,Sichuan University(2021HXBH054)。
文摘The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
基金funded by Beijing Hope Run Special Fund of Cancer Foundation of China (No.LC2020A19)。
文摘Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.