期刊文献+
共找到43,956篇文章
< 1 2 250 >
每页显示 20 50 100
Single-cell transcriptome sequencing reveals the mechanism regulating rice plumule development
1
作者 Mingdong Zhu Meng Zhang +8 位作者 Kunyong Huang Feifei Lu Hong Wang Shaolu Zhao Yinghong Yu Shaoqing Tang Haining Wu Peisong Hu Xiangjin Wei 《The Crop Journal》 SCIE CSCD 2024年第3期688-697,共10页
Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell tr... Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop. 展开更多
关键词 RICE Plumule single-cell sequencing Regulatory network
下载PDF
Single-cell transcriptomic atlas of goat ovarian aging
2
作者 Dejun Xu Shuaifei Song +5 位作者 Fuguo Wang Yawen Li Ziyuan Li Hui Yao Yongju Zhao Zhongquan Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期146-161,共16页
Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known a... Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging,especially in goats.Therefore,the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution.Results For the first time,we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn,young and aging goats,and identified nine ovarian cell types with distinct gene-expression signatures.Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes,such as Wnt beta-catenin signalling was enriched in germ cells,whereas ovarian steroidogenesis was enriched in granulosa cells(GCs).Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system,oxidative phosphorylation,and apoptosis.Subsequently,we identified a series of dynamic genes,such as AMH,CRABP2,THBS1 and TIMP1,which determined the fate of GCs.Additionally,FOXO1,SOX4,and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging.Conclusions This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell typespecific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases. 展开更多
关键词 GOAT Granulosa cells Ovarian aging single-cell transcriptomic
下载PDF
Single-cell and spatial omics:exploring hypothalamic heterogeneity
3
作者 Muhammad Junaid Eun Jeong Lee Su Bin Lim 《Neural Regeneration Research》 SCIE CAS 2025年第6期1525-1540,共16页
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technolo... Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements. 展开更多
关键词 cellular diversity HYPOTHALAMUS multi-omics single-cell transcriptomics spatial transcriptomics
下载PDF
Going straight for the gut:gut-brain axis pathology and treatment of Parkinson's disease
4
作者 Dominique Ebedes Cesar V.Borlongan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2111-2112,共2页
This perspective focuses on the recent literature regarding the role of the gut-brain axis(GBA) in fecal microbiota transplantation(FMT) and stem cell therapy(SCT) in Parkinson's disease(PD).PD is the second most ... This perspective focuses on the recent literature regarding the role of the gut-brain axis(GBA) in fecal microbiota transplantation(FMT) and stem cell therapy(SCT) in Parkinson's disease(PD).PD is the second most common neurodegenerative disease in the United States,yet therapies remain limited.Current research suggests that the GBA may play a role in the pathogenesis of PD.GBAbased FMT as well as SCT offer promising new avenues for PD treatment.Pro bing the interactions between FMT and SCT with the GBA may reveal novel therapeutics for PD. 展开更多
关键词 STRAIGHT pathology PATHOGENESIS
下载PDF
Amyloid-beta pathology-induced nanoscale synaptic disruption:the case of the GABA_B-GIRK assembly
5
作者 Rafael Lujan Alejandro Martín-Belmonte +1 位作者 Sergi Ferré Francisco Ciruela 《Neural Regeneration Research》 SCIE CAS 2025年第5期1409-1410,共2页
Alzheimer's disease (AD) is characterized by an imbalance between excitatory and inhibitory brain networks,leading to aberrant homeostatic synaptic plasticity.AD has progressively been recognized as syna ptopathy ... Alzheimer's disease (AD) is characterized by an imbalance between excitatory and inhibitory brain networks,leading to aberrant homeostatic synaptic plasticity.AD has progressively been recognized as syna ptopathy and syna ptic dysfunction has been identified as a key component of its pathogenesis (Schirinzi et al.,2020).Syna ptic dysfunction is believed to precede synapse loss,a primary biological correlate of cognitive decline in AD,inevita bly associated with neuronal death. 展开更多
关键词 ALZHEIMER pathology
下载PDF
Applications of single-cell RNA sequencing in spermatogenesis and molecular evolution
6
作者 Wen-Bo Chen Meng-Fei Zhang +1 位作者 Fan Yang Jin-Lian Hua 《Zoological Research》 SCIE CSCD 2024年第3期575-585,共11页
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ... Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis. 展开更多
关键词 single-cell RNA sequencing(scRNA-seq) SPERMATOGENESIS Molecular evolution Sertoli cell
下载PDF
Single-cell profiling of the pig cecum at various developmental stages
7
作者 Yan-Yuan Xiao Qing Zhang +9 位作者 Fei Huang Lin Rao Tian-Xiong Yao Si-Yu Yang Lei Xie Xiao-Xiao Zou Li-Ping Cai Jia-Wen Yang Bin Yang Lu-Sheng Huang 《Zoological Research》 SCIE CSCD 2024年第1期55-68,共14页
The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding... The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity,functional heterogeneity,and their importance in intestinal tract development and disease.Although such profiling has been extensively conducted in humans and mice,the single-cell gene expression landscape of the pig cecum remains unexplored.Here,single-cell RNA sequencing was performed on 45572 cells obtained from seven cecal samples in pigs at four different developmental stages(days(D)30,42,150,and 730).Analysis revealed 12 major cell types and 38 subtypes,as well as their distinctive genes,transcription factors,and regulons,many of which were conserved in humans.An increase in the relative proportions of CD8^(+)T and Granzyme A(low expression)natural killer T cells(GZMA^(low)NKT)cells and a decrease in the relative proportions of epithelial stem cells,Tregs,RHEX^(+)T cells,and plasmacytoid dendritic cells(pDCs)were noted across the developmental stages.Moreover,the post-weaning period exhibited an up-regulation in mitochondrial genes,COX2 and ND2,as well as genes involved in immune activation in multiple cell types.Cell-cell crosstalk analysis indicated that IBP6^(+)fibroblasts were the main signal senders at D30,whereas IBP6^(−)fibroblasts assumed this role at the other stages.NKT cells established interactions with epithelial cells and IBP6^(+)fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs.This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages. 展开更多
关键词 single-cell RNA-seq CECUM Bama Xiang pigs Various developmental stages Cellular heterogeneity
下载PDF
Food nutrition and toxicology targeting on specific organs in the era of single-cell sequencing
8
作者 Xiaofei Wang Xiaowen Cheng +2 位作者 Huiling Liu Xiaohuan Mu Hao Zheng 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期75-89,共15页
Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and parti... Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level. 展开更多
关键词 Dietary food Cellular heterogeneity single-cell RNA sequencing Food nutrients Food toxicants
下载PDF
Single-cell sequencing technology in diabetic wound healing:New insights into the progenitors-based repair strategies
9
作者 Zhen Xiang Rui-Peng Cai +1 位作者 Yang Xiao Yong-Can Huang 《World Journal of Stem Cells》 SCIE 2024年第5期462-466,共5页
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ... Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM. 展开更多
关键词 single-cell sequencing Diabetic wound healing Cell subpopulations Heterogeneity PATHOGENESIS Progenitor cells
下载PDF
A Single-Cell Landscape of Human Liver Transplantation Reveals a Pathogenic Immune Niche Associated with Early Allograft Dysfunction
10
作者 Xin Shao Zheng Wang +8 位作者 Kai Wang Xiaoyan Lu Ping Zhang Rongfang Guo Jie Liao Penghui Yang Shusen Zheng Xiao Xu Xiaohui Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期193-208,共16页
Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical... Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset. 展开更多
关键词 Human liver transplantation Early allograft dysfunction Pathogenic immune niche single-cell analysis Cell-cell communication
下载PDF
Action of circulating and infiltrating B cells in the immune microenvironment of colorectal cancer by single-cell sequencing analysis
11
作者 Jing-Po Zhang Bing-Zheng Yan +1 位作者 Jie Liu Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2683-2696,共14页
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t... BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect. 展开更多
关键词 Colorectal cancer Multi-omics analysis single-cell sequencing analysis Immune microenvironment Infiltrating B cells
下载PDF
Using MsfNet to Predict the ISUP Grade of Renal Clear Cell Carcinoma in Digital Pathology Images
12
作者 Kun Yang Shilong Chang +5 位作者 Yucheng Wang Minghui Wang Jiahui Yang Shuang Liu Kun Liu Linyan Xue 《Computers, Materials & Continua》 SCIE EI 2024年第1期393-410,共18页
Clear cell renal cell carcinoma(ccRCC)represents the most frequent form of renal cell carcinoma(RCC),and accurate International Society of Urological Pathology(ISUP)grading is crucial for prognosis and treatment selec... Clear cell renal cell carcinoma(ccRCC)represents the most frequent form of renal cell carcinoma(RCC),and accurate International Society of Urological Pathology(ISUP)grading is crucial for prognosis and treatment selection.This study presents a new deep network called Multi-scale Fusion Network(MsfNet),which aims to enhance the automatic ISUP grade of ccRCC with digital histopathology pathology images.The MsfNet overcomes the limitations of traditional ResNet50 by multi-scale information fusion and dynamic allocation of channel quantity.The model was trained and tested using 90 Hematoxylin and Eosin(H&E)stained whole slide images(WSIs),which were all cropped into 320×320-pixel patches at 40×magnification.MsfNet achieved a micro-averaged area under the curve(AUC)of 0.9807,a macro-averaged AUC of 0.9778 on the test dataset.The Gradient-weighted Class Activation Mapping(Grad-CAM)visually demonstrated MsfNet’s ability to distinguish and highlight abnormal areas more effectively than ResNet50.The t-Distributed Stochastic Neighbor Embedding(t-SNE)plot indicates our model can efficiently extract critical features from images,reducing the impact of noise and redundant information.The results suggest that MsfNet offers an accurate ISUP grade of ccRCC in digital images,emphasizing the potential of AI-assisted histopathological systems in clinical practice. 展开更多
关键词 Renal cell carcinoma computer-aided diagnosis pathology image deep learning machine learning
下载PDF
The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum
13
作者 Kailang Huang Bin Yang +2 位作者 Zebang Xu Hongwei Chen Jiakun Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期218-235,共18页
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ... Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways. 展开更多
关键词 Early life Forestomachs Four-chambered stomach Immune cells Immune system maturation MIF signaling RUMEN Ruminant development single-cell transcriptomic sequencing
下载PDF
NLRP3-mediated autophagy dysfunction links gut microbiota dysbiosis to tau pathology in chronic sleep deprivation
14
作者 Na Zhao Xiu Chen +6 位作者 Qiu-Gu Chen Xue-Ting Liu Fan Geng Meng-Meng Zhu Fu-Ling Yan Zhi-Jun Zhang Qing-Guo Ren 《Zoological Research》 SCIE CSCD 2024年第4期857-874,共18页
Emerging evidence indicates that sleep deprivation(SD)can lead to Alzheimer’s disease(AD)-related pathological changes and cognitive decline.However,the underlying mechanisms remain obscure.In the present study,we id... Emerging evidence indicates that sleep deprivation(SD)can lead to Alzheimer’s disease(AD)-related pathological changes and cognitive decline.However,the underlying mechanisms remain obscure.In the present study,we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD.Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis,elevated NLRP3 inflammasome expression,GSK-3βactivation,autophagy dysfunction,and tau hyperphosphorylation in the hippocampus.Colonization with the“SD microbiota”replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice.Remarkably,both the deletion of NLRP3 in NLRP3-/-mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux,suppressed tau hyperphosphorylation,and ameliorated cognitive deficits induced by chronic SD,while GSK-3βactivity was not regulated by the NLRP3 inflammasome in chronic SD.Notably,deletion of NLRP3 reversed NLRP3 inflammasome activation,autophagy deficits,and tau hyperphosphorylation induced by GSK-3βactivation in primary hippocampal neurons,suggesting that GSK-3β,as a regulator of NLRP3-mediated autophagy dysfunction,plays a significant role in promoting tau hyperphosphorylation.Thus,gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction,ultimately leading to cognitive deficits.Overall,these findings highlight GSK-3βas a regulator of NLRP3-mediated autophagy dysfunction,playing a critical role in promoting tau hyperphosphorylation. 展开更多
关键词 Chronic sleep deprivation Tau pathology NLRP3 inflammasome AUTOPHAGY GSK-3β Microbiota-gut-brain axis
下载PDF
Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure
15
作者 Shaojun Wang Siti Tong +5 位作者 Xin Jin Na Li Pingxiu Dang Yang Sui Ying Liu Dajiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2522-2531,共10页
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ... High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies. 展开更多
关键词 APOPTOSIS axon degeneration high intraocular pressure MICROGLIA ocular hypertension photoreceptor cells RETINA retinal degeneration retinal ganglion cells single-cell RNA sequencing
下载PDF
Identification and validation of a pyroptosis-related prognostic model for colorectal cancer based on bulk and single-cell RNA sequencing data
16
作者 Li-Hua Zhu Jun Yang +3 位作者 Yun-Fei Zhang Li Yan Wan-Rong Lin Wei-Qing Liu 《World Journal of Clinical Oncology》 2024年第2期329-355,共27页
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc... BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation. 展开更多
关键词 Colorectal cancer PYROPTOSIS single-cell RNA sequencing Immune infiltration Prognostic model
下载PDF
Microvascular structural changes in esophageal squamous cell carcinoma pathology according to intrapapillary capillary loop types under magnifying endoscopy
17
作者 Wei-Yang Shu Yan-Yan Shi +5 位作者 Jiu-Tian Huang Ling-Mei Meng He-Jun Zhang Rong-Li Cui Yuan Li Shi-Gang Ding 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3471-3480,共10页
BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma... BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma(ESCC).Japan Esophageal Society(JES)classification is the most widely used classification.Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor:tortuosity,dilatation,irregular caliber,and different shapes.However,the pathological characteristics of IPCLs have not been thoroughly investigated,especially the microvascular structures corresponding to the deepest parts of the lesions'infiltration.AIM To investigate differences in pathological microvascular structures of ESCC,which correspond to the deepest parts of the lesions'infiltration.METHODS Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023.Patients first underwent magnified endoscopic examination,followed by endoscopic submucosal dissection or surgical treatment.Pathological images were scanned using a threedimensional slice scanner,and the pathological structural differences in different types,according to the JES classification,were analyzed using nonparametric tests and t-tests.RESULTS The 35 lesions were divided into four groups according to the JES classification:A,B1,B2,and B3.Statistical analyses revealed significant differences(aP<0.05)in the short and long calibers,area,location,and density between types A and B.Notably,there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3(P>0.05).However,significant differences in the short calibers,long calibers,and area of IPCL were observed between types B1 and B3(aP<0.05);no significant differences were found in the density or location(P>0.05).CONCLUSION Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy,especially between the types A and B. 展开更多
关键词 Esophageal squamous cell carcinoma Intrapapillary capillary loop The Japan Esophageal Society classification Magnifying endoscopy pathological characteristics
下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
18
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic pathology COVID-19 Deep Learning Multi-Task Learning
下载PDF
Expanding role and scope of artificial intelligence in the field of gastrointestinal pathology
19
作者 Muhammed Mubarak Rahma Rashid +1 位作者 Fnu Sapna Shaheera Shakeel 《Artificial Intelligence in Gastroenterology》 2024年第2期10-19,共10页
Digital pathology(DP)and its subsidiaries including artificial intelligence(AI)are rapidly making inroads into the area of diagnostic anatomic pathology(AP)including gastrointestinal(GI)pathology.It is poised to revol... Digital pathology(DP)and its subsidiaries including artificial intelligence(AI)are rapidly making inroads into the area of diagnostic anatomic pathology(AP)including gastrointestinal(GI)pathology.It is poised to revolutionize the field of diagnostic AP.Historically,AP has been slow to adopt digital technology,but this is changing rapidly,with many centers worldwide transitioning to DP.Coupled with advanced techniques of AI such as deep learning and machine learning,DP is likely to transform histopathology from a subjective field to an objective,efficient,and transparent discipline.AI is increasingly integrated into GI pathology,offering numerous advancements and improvements in overall diagnostic accuracy,efficiency,and patient care.Specifically,AI in GI pathology enhances diagnostic accuracy,streamlines workflows,provides predictive insights,integrates multimodal data,supports research,and aids in education and training,ultimately improving patient care and outcomes.This review summarized the latest developments in the role and scope of AI in AP with a focus on GI pathology.The main aim was to provide updates and create awareness among the pathology community. 展开更多
关键词 Gastrointestinal pathology Digital pathology Artificial intelligence Machine learning Deep learning Precision diagnostics
下载PDF
Single-cell transcriptome analysis reveals the regulatory effects of artesunate on splenic immune cells in polymicrobial sepsis 被引量:2
20
作者 Jiayun Chen Xueling He +11 位作者 Yunmeng Bai Jing Liu Yin Kwan Wong Lulin Xie Qian Zhang Piao Luo Peng Gao Liwei Gu Qiuyan Guo Guangqing Cheng Chen Wang Jigang Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第7期817-829,共13页
Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomodulatory drugs on th... Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomodulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various immune cells remain limited.This study aimed to investigate the protective effects and underlying mechanism of artesunate(ART)on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing(scRNA-seq)and experimental validations.The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis.ART could restore neutrophils’chemotaxis and immune function in the septic spleen.It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis.ART also promoted the differentiation and activity of splenic B cells in mice with sepsis.These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host.Overall,this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis,thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis. 展开更多
关键词 ARTESUNATE SEPSIS single-cell RNA sequencing Immunomodulatory activity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部