Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t...Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic d...Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic description of water-gas flow in coal.For this purpose,we reconstructed the microstructures of low-rank coal using micro-computed tomography(micro-CT)images.Pore geometry and pore-throat parameters are introduced to establish a relationship with absolute permeability.A dual-porosity pore network model is developed to study water-gas displacement under different wetting and pore structure properties.Results show that absolute permeability is significantly affected by pore geometry and can be described using a binary quadratic function of porosity and fractal dimension.Water-gas relative permeability varies significantly and the residual gas saturation is lower;the crossover saturation first decreased and then increased with increasing porosity under hydrophobic conditions.While the water relative permeability is lower and a certain amount of gas is trapped in complex pore-throat networks;the crossover saturation is higher under hydrophilic conditions.Models with large percolating porosity and well-developed pore networks have high displacement efficiency due to low capillary resistance and avoidance of trapping.This work provides a systematic description of absolute permeability and water-gas relative permeability in coal microstructure for enhanced gas recovery.展开更多
This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali acti...This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%.展开更多
The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efe...The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.展开更多
A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-...A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-gel reactions were carried out in a mixture of stronger ammonia water and n-propanol at the volume ratio of 2:8. Single-handed twisted silica nanostructures with pore channels vertical to the wall surfaces were first prepared through a single-templating approach comparing with the reported double template method. The formation mechanism of radial pore structure was studied by transmission electron microscopy at different reaction time intervals, which indicated that the radial pore structure was formed via a structural transition in the sol-gel transcription process.展开更多
In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones....In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.展开更多
Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The ...Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice.展开更多
The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials m...The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS.展开更多
Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum e...Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.展开更多
Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-free...Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process.展开更多
Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ...Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.展开更多
The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concret...The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.展开更多
According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivale...According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.展开更多
The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results conta...The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.展开更多
The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on poros...The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
基金supported by the National Natural Science Foundation of China(52274056,U22B2075).
文摘Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
基金the National Natural Science Foundation of China(Nos.51934004,51974176)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province(No.ZR2020JQ22)+1 种基金the Youth Science and Technology Innovation of Shandong Province(No.2019KJH006)the Special Funds for Taishan Scholar Project(No.TS20190935).
文摘Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic description of water-gas flow in coal.For this purpose,we reconstructed the microstructures of low-rank coal using micro-computed tomography(micro-CT)images.Pore geometry and pore-throat parameters are introduced to establish a relationship with absolute permeability.A dual-porosity pore network model is developed to study water-gas displacement under different wetting and pore structure properties.Results show that absolute permeability is significantly affected by pore geometry and can be described using a binary quadratic function of porosity and fractal dimension.Water-gas relative permeability varies significantly and the residual gas saturation is lower;the crossover saturation first decreased and then increased with increasing porosity under hydrophobic conditions.While the water relative permeability is lower and a certain amount of gas is trapped in complex pore-throat networks;the crossover saturation is higher under hydrophilic conditions.Models with large percolating porosity and well-developed pore networks have high displacement efficiency due to low capillary resistance and avoidance of trapping.This work provides a systematic description of absolute permeability and water-gas relative permeability in coal microstructure for enhanced gas recovery.
基金the National Natural Science Foundation of China(No.51709097).
文摘This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%.
基金supported by the Natural Science Foundation of China(51874236 and 52174207)Shaanxi Provincial Department of Science and Technology(2020JC-48 and 2022TD-02)China Postdoctoral Science Foundation(2021M693879).
文摘The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.
基金Funded by the Science and Technology Innovation Plan of Wuhan Textile Universitythe Open Project of the State Key Laboratory of New Textile Materials and Advanced Processing Technologies (No.FZ2020003)the National Natural Science Foundation of China (No.51603155)。
文摘A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-gel reactions were carried out in a mixture of stronger ammonia water and n-propanol at the volume ratio of 2:8. Single-handed twisted silica nanostructures with pore channels vertical to the wall surfaces were first prepared through a single-templating approach comparing with the reported double template method. The formation mechanism of radial pore structure was studied by transmission electron microscopy at different reaction time intervals, which indicated that the radial pore structure was formed via a structural transition in the sol-gel transcription process.
基金supported by the National Natural Science Foundation of China(51674049,52074044,and 51874053)the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0854)。
文摘In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.
基金the National Natural Science Foundation of China(No.41972297)the Natural Science Foundation of Hebei Province(No.D2021202002).
文摘Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice.
基金funded by the National Natural Science Foundation of China(No.51904154)Natural Science Foundation of Hunan Province(No.2020JJ5491).
文摘The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS.
基金supported by the National Natural Science Foundation of China(42004086,42172159)the Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023007).
文摘Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.
基金supported by the National Natural Science Foundation of China(Grant No.51709097).
文摘Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process.
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金We gratefully acknowledge financial supports from the National Natural Science Foundation of China(No.52202371,51905125,52102364)the Natural Science Foundation of Shandong Province(No.ZR2020QE066)+2 种基金Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2020KF08)SDUT&Zibo City Integration Development Project(No.2021SNPT0045)the fellowship of China Postdoctoral Science Foundation(No.2020M672081).
文摘Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.
基金supported by the National Natural Science Foundation of China Project 51868058,52068058Inner Mongolia Natural Science Foundation 2018MS05011Inner Mongolia“Grassland Talent”CYYC5039.
文摘The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.
基金Supported by the National Natural Science Foundation of China(U2003102,41974117)China National Science and Technology Major Project(2016ZX05052001).
文摘According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.
基金supported by the National Natural Science Foundation of China(41702132).
文摘The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.
基金supported by the Natural Science Foundation of China(No.41274138)
文摘The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.