Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,a...Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,and optoelectronics.With superior semiconducting properties,halide perovskite materials are rising as building blocks for heterostructures.Here,the conformal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process.The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships:CsPbBr3(110)//PbS(100),CsPbBr3[001]//PbS[001]and CsPbBr3[001]//PbS[010].The absorption and photoluminescence(PL)characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogenerated carrier transfer.Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W,high detectivity of 2.65×10^(11) Jones,fast response speed of 96 ms and obvious rectification behavior.Our study offers a convenient method for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their application in optoelectronic devices.展开更多
The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epit...The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method.The results demonstrate that there are three main regions by varying the spatial position of the seed.Due to the plasma concentration occurring at the seed edge,a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge.However,the plasma density at the edge decreases drastically when the depth is too large,resulting in the growth of a vicinal grain plane and the reduction of surface area.By adopting an appropriate spatial location,the size of single-crystal diamond can be increased from 7 mm×7 mm×0.35 mm to8.6 mm×8.6 mm×2.8 mm without the polycrystalline diamond rim.展开更多
β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent toleranc...β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.展开更多
Single-crystal rods with different diameters and deviation angles with respect to the solidification direction were produced by Bridgman rapid solidification method at withdrawal rates of 3 and 6 mm·min^(-1) and ...Single-crystal rods with different diameters and deviation angles with respect to the solidification direction were produced by Bridgman rapid solidification method at withdrawal rates of 3 and 6 mm·min^(-1) and used as grain continuators.The crystallographic orientation of the rods,which cross-sections were perpendicular to the solidification direction at different solidification heights,was measured by electron backscattered diffraction,while the corresponding microstructures were observed by optical microscopy.The mushy zone morphology and the distribution of the temperature gradient were simulated by the finite element analysis software ProCAST.The experimental results indicate that the crystallographic orientation of the single-crystal rods corresponds to the statistical average value of all the dendrite orientations in cross-section.The crystallographic orientation of the primary and secondary dendrites of each single-crystal rod at different cross-sections fluctuates irregularly within a small range(less than 4°).The crystallographic orientation of the dendrite in each single-crystal rod is not exactly consistent with each other and is affected by their branching mode of dendrites in the solidification space.In addition,the simulation results show that the mushy zone shapes and the temperature gradient of single-crystal rods change with the increase of solidification height during the solidification process.Finally,the evolution mechanism of the crystallographic orientations and the corresponding influence factors were analyzed and discussed.展开更多
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ...Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.展开更多
It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the ...It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the test of creep crack growth, it is also acquired that under same mechanic parameter C* (t), the rate of creep crack growth in the HAZ is more than twice as fast as in parent metals. Two mechanisms (overheating and thermal shock) of failure occurred in an accident are presented. The stress of thermal shock is analyzed, in which the change of the elasticity modulus with the radius ET = /(r) is considered. Based on it, the safety region of the thermal shock is obtained. Finally, two sets of curves for the safe life are suggested which can facilitate to estimate the remaining life of HK-40 or HP-Nb tubes by their creep rupture data.展开更多
Using differential thermal analysis, X-ray phase analysis, electron microscopy, and optical microscopy, the nucleation of crystals in glass obtained by blending metallurgical slag with silicon dioxide has been studied...Using differential thermal analysis, X-ray phase analysis, electron microscopy, and optical microscopy, the nucleation of crystals in glass obtained by blending metallurgical slag with silicon dioxide has been studied. The type of crystallization (homogeneous or heterogeneous, volume or surface) is revealed for each of nine compositions of synthesized glass. It is shown that the first crystalline phase in a volume crystallizing glass is perovskite (CaO·TiO2);in this phase a nucleation of the main phase occurs: melilite (solid solution of gehlenite 2CaO·Al2O3·SiO2 in akermanite 2CaO·MgO·2SiO2). The fundamental characteristics of homogeneous (for a catalizing phase, perovskite) and heterogeneous (for a catalyzed phase, melilite) of crystallization are determined: the steady state nucleation rate Ist, time of unsteady state nucleation τ, crystal growth rate U, and activation energy of frictional flow. The temperature dependences of Ist, τ, and U are obtained. The kinetics of the crystallization of glass is studied and the rates of the surface crystal growth are determined in the glass of nine compositions. The influence of grinding the particles of the original glass on the sequence of deposition of the crystalline phases was studied. Practical recommendations are presented for the use of blast-furnace slag as a raw material for the synthesis of glass and their further utilization.展开更多
To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth...To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.展开更多
A successful repair of single-crystal components needs to avoid the stray grain formation and achieves continuous epitaxial growth of columnar dendrites in the repaired zone. In this study, the effect of substrate pre...A successful repair of single-crystal components needs to avoid the stray grain formation and achieves continuous epitaxial growth of columnar dendrites in the repaired zone. In this study, the effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy was studied through an improved mathematical model and corresponding experimental approaches. The results indicated that the variation of substrate preset temperature between-30℃ and +210℃ changes the molten pool morphology little, but obviously affects the columnar-to-equiaxed transition conditions. The preheating of substrate facilitates the stray grain formation and enlarges the primary columnar dendrite arm spacing, while the situation for precooling of substrate is opposite. Under the specific processing conditions, the critical condition for continuous epitaxial growth is that the substrate preset temperature Tsub≤ +90℃. When the substrate preset temperature Tsubis below +90℃, the height ratio of melting depth to total height of the molten pool is larger than that of stray grain, ensuring that stray grains can be completely remelted and the continuous columnar dendrites during the multi-layer laser powder deposition process on(001) surface of single-crystal substrate can be achieved.展开更多
Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach,...Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach, which has been recognized as a simple and cost-effective alternative for obtaining single crystals. In this work, YAlO(YAG) and Nd-doped YAG(Nd:YAG) single crystals were grown via the SSCG method using spark plasma sintering(SPS). The growth of single crystals was initiated at the surface of(110) YAG single-crystal seeds embedded inside YAG and Nd:YAG powder beds, and this growth continued as the surrounding polycrystalline matrix was converted into a single crystal. The application of external pressure during the SPS process has been found beneficial for reducing the porosity of the grown single crystals. Moreover, high Nddoping levels had a positive effect on the conversion kinetics,with a growth rate of almost 50 μm/h, which increased the driving force for single-crystal growth through the solute drag effect. EDS elemental mapping and line scans confirmed the compositional uniformity of the grown single crystals, while EBSD images verified their crystallization in the(110) direction. The obtained results confirm the strong potential of the SSCG technique coupled with SPS for the growth of undoped and highly doped YAG single crystals with excellent quality.展开更多
含钛高炉渣中钛组分弥散分布于多种矿物相中 ,很难直接用选矿方法分离。在高炉渣中加入 Ca O和 Mn O可使钛富集于充分结晶长大的钙钛矿相中 ,为选矿分离创造必要条件。作者借助多视场图像分析及粘度测定研究了 Ca O、Mn O对钙钛矿相结...含钛高炉渣中钛组分弥散分布于多种矿物相中 ,很难直接用选矿方法分离。在高炉渣中加入 Ca O和 Mn O可使钛富集于充分结晶长大的钙钛矿相中 ,为选矿分离创造必要条件。作者借助多视场图像分析及粘度测定研究了 Ca O、Mn O对钙钛矿相结晶的影响。实验结果表明 :Ca O加入量对钙钛矿结晶及晶体生长有双重影响。加入适量 Ca O,有利于钙钛矿相结晶量的增加 ,但 Ca O加入量过多 ,使熔渣粘度及熔化性温度显著提高 ,反而抑制钙钛矿结晶长大。加入适量 Mn O可显著降低熔渣粘度及熔化性温度 ,促进钙钛矿结晶长大。随 Ca O加入量提高 ,钙钛矿由粗大的树枝晶转变为细小等轴晶 ,说明加入过多 Ca O不利于钙钛矿晶体粗化。展开更多
基金This work was supported by the Natural Science Foundation of China(Grant No.11704389)Scientific Equipment Development Project and Youth Innovation Promotion Association Project of Chinese Academy of Sciences.
文摘Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,and optoelectronics.With superior semiconducting properties,halide perovskite materials are rising as building blocks for heterostructures.Here,the conformal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process.The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships:CsPbBr3(110)//PbS(100),CsPbBr3[001]//PbS[001]and CsPbBr3[001]//PbS[010].The absorption and photoluminescence(PL)characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogenerated carrier transfer.Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W,high detectivity of 2.65×10^(11) Jones,fast response speed of 96 ms and obvious rectification behavior.Our study offers a convenient method for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their application in optoelectronic devices.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101690001)。
文摘The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method.The results demonstrate that there are three main regions by varying the spatial position of the seed.Due to the plasma concentration occurring at the seed edge,a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge.However,the plasma density at the edge decreases drastically when the depth is too large,resulting in the growth of a vicinal grain plane and the reduction of surface area.By adopting an appropriate spatial location,the size of single-crystal diamond can be increased from 7 mm×7 mm×0.35 mm to8.6 mm×8.6 mm×2.8 mm without the polycrystalline diamond rim.
文摘β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.
基金supported by the National Natural Science Foundation of China(No.51674235)the National Key Research and Development Program of China(Nos.2017-VI0001-0070 and 2017-VI-0019-0091)。
文摘Single-crystal rods with different diameters and deviation angles with respect to the solidification direction were produced by Bridgman rapid solidification method at withdrawal rates of 3 and 6 mm·min^(-1) and used as grain continuators.The crystallographic orientation of the rods,which cross-sections were perpendicular to the solidification direction at different solidification heights,was measured by electron backscattered diffraction,while the corresponding microstructures were observed by optical microscopy.The mushy zone morphology and the distribution of the temperature gradient were simulated by the finite element analysis software ProCAST.The experimental results indicate that the crystallographic orientation of the single-crystal rods corresponds to the statistical average value of all the dendrite orientations in cross-section.The crystallographic orientation of the primary and secondary dendrites of each single-crystal rod at different cross-sections fluctuates irregularly within a small range(less than 4°).The crystallographic orientation of the dendrite in each single-crystal rod is not exactly consistent with each other and is affected by their branching mode of dendrites in the solidification space.In addition,the simulation results show that the mushy zone shapes and the temperature gradient of single-crystal rods change with the increase of solidification height during the solidification process.Finally,the evolution mechanism of the crystallographic orientations and the corresponding influence factors were analyzed and discussed.
基金Project(12C0379) supported by Scientific Research Fund of Hunan Province,China
文摘Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.
文摘It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the test of creep crack growth, it is also acquired that under same mechanic parameter C* (t), the rate of creep crack growth in the HAZ is more than twice as fast as in parent metals. Two mechanisms (overheating and thermal shock) of failure occurred in an accident are presented. The stress of thermal shock is analyzed, in which the change of the elasticity modulus with the radius ET = /(r) is considered. Based on it, the safety region of the thermal shock is obtained. Finally, two sets of curves for the safe life are suggested which can facilitate to estimate the remaining life of HK-40 or HP-Nb tubes by their creep rupture data.
文摘Using differential thermal analysis, X-ray phase analysis, electron microscopy, and optical microscopy, the nucleation of crystals in glass obtained by blending metallurgical slag with silicon dioxide has been studied. The type of crystallization (homogeneous or heterogeneous, volume or surface) is revealed for each of nine compositions of synthesized glass. It is shown that the first crystalline phase in a volume crystallizing glass is perovskite (CaO·TiO2);in this phase a nucleation of the main phase occurs: melilite (solid solution of gehlenite 2CaO·Al2O3·SiO2 in akermanite 2CaO·MgO·2SiO2). The fundamental characteristics of homogeneous (for a catalizing phase, perovskite) and heterogeneous (for a catalyzed phase, melilite) of crystallization are determined: the steady state nucleation rate Ist, time of unsteady state nucleation τ, crystal growth rate U, and activation energy of frictional flow. The temperature dependences of Ist, τ, and U are obtained. The kinetics of the crystallization of glass is studied and the rates of the surface crystal growth are determined in the glass of nine compositions. The influence of grinding the particles of the original glass on the sequence of deposition of the crystalline phases was studied. Practical recommendations are presented for the use of blast-furnace slag as a raw material for the synthesis of glass and their further utilization.
基金Project(BA2012049)supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements,China
文摘To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.
基金supported by the Shenzhen Science and Technology Innovation Commission under project No. JCYJ20170817111811303
文摘A successful repair of single-crystal components needs to avoid the stray grain formation and achieves continuous epitaxial growth of columnar dendrites in the repaired zone. In this study, the effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy was studied through an improved mathematical model and corresponding experimental approaches. The results indicated that the variation of substrate preset temperature between-30℃ and +210℃ changes the molten pool morphology little, but obviously affects the columnar-to-equiaxed transition conditions. The preheating of substrate facilitates the stray grain formation and enlarges the primary columnar dendrite arm spacing, while the situation for precooling of substrate is opposite. Under the specific processing conditions, the critical condition for continuous epitaxial growth is that the substrate preset temperature Tsub≤ +90℃. When the substrate preset temperature Tsubis below +90℃, the height ratio of melting depth to total height of the molten pool is larger than that of stray grain, ensuring that stray grains can be completely remelted and the continuous columnar dendrites during the multi-layer laser powder deposition process on(001) surface of single-crystal substrate can be achieved.
基金the NSF grant (No.1554094) for supporting the research。
文摘Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach, which has been recognized as a simple and cost-effective alternative for obtaining single crystals. In this work, YAlO(YAG) and Nd-doped YAG(Nd:YAG) single crystals were grown via the SSCG method using spark plasma sintering(SPS). The growth of single crystals was initiated at the surface of(110) YAG single-crystal seeds embedded inside YAG and Nd:YAG powder beds, and this growth continued as the surrounding polycrystalline matrix was converted into a single crystal. The application of external pressure during the SPS process has been found beneficial for reducing the porosity of the grown single crystals. Moreover, high Nddoping levels had a positive effect on the conversion kinetics,with a growth rate of almost 50 μm/h, which increased the driving force for single-crystal growth through the solute drag effect. EDS elemental mapping and line scans confirmed the compositional uniformity of the grown single crystals, while EBSD images verified their crystallization in the(110) direction. The obtained results confirm the strong potential of the SSCG technique coupled with SPS for the growth of undoped and highly doped YAG single crystals with excellent quality.
文摘含钛高炉渣中钛组分弥散分布于多种矿物相中 ,很难直接用选矿方法分离。在高炉渣中加入 Ca O和 Mn O可使钛富集于充分结晶长大的钙钛矿相中 ,为选矿分离创造必要条件。作者借助多视场图像分析及粘度测定研究了 Ca O、Mn O对钙钛矿相结晶的影响。实验结果表明 :Ca O加入量对钙钛矿结晶及晶体生长有双重影响。加入适量 Ca O,有利于钙钛矿相结晶量的增加 ,但 Ca O加入量过多 ,使熔渣粘度及熔化性温度显著提高 ,反而抑制钙钛矿结晶长大。加入适量 Mn O可显著降低熔渣粘度及熔化性温度 ,促进钙钛矿结晶长大。随 Ca O加入量提高 ,钙钛矿由粗大的树枝晶转变为细小等轴晶 ,说明加入过多 Ca O不利于钙钛矿晶体粗化。