期刊文献+
共找到98,158篇文章
< 1 2 250 >
每页显示 20 50 100
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
1
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition 被引量:8
2
作者 Yan-zhao Guo Jin-long Liu +9 位作者 Jiang-wei Liu Yu-ting Zheng Yun Zhao Xiao-lu Yuan Zi-hao Guo Li-fu Hei Liang-xian Chen Jun-jun Wei Jian-peng Xing Cheng-ming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期703-712,共10页
Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity i... Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity in practical applications has been inhibited by space charge stability issues caused by defects and impurities in pure diamond crystal materials. In this study, two high-quality CVD-grown single-crystal diamond(SCD) detectors with low content of nitrogen impurities were fabricated and characterized. The intrinsic properties of the SCD samples were characterized using Raman spectroscopy, stereomicroscopy, and X-ray diffraction with the rocking curve mode, cathode luminescence(CL), and infrared and ultraviolet-visible-near infrared spectroscopies. After packaging the detectors, the dark current and energy resolution under α particle irradiation were investigated. Dark currents of less than 5 pA at 100 V were obtained after annealing the electrodes, which is comparable with the optimal value previously reported. The detector that uses a diamond film with higher nitrogen content showed poor energy resolution, whereas the detector with more dislocations showed poor charge collection efficiency(CCE). This demonstrates that the nitrogen content in diamond has a significant effect on the energy resolution of detectors, while the dislocations in diamond largely contribute to the poor CCE of detectors. 展开更多
关键词 single-crystal DIAMOND NITROGEN IMPURITY DETECTOR αparticle
下载PDF
Effects of manganese substitution on magnetic and magnetostrictive properties of Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)/epoxy composites with spherical single-crystal particles 被引量:1
3
作者 Dashun Dong Geng Wei +5 位作者 Jin Qian Ye Huang Li Zhang Hehe Ding Yangguang Shi Shaolong Tang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第8期1211-1216,I0004,共7页
Spherical Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)(x=0,0.05,0.10 and 0.15)single-crystal particles were prepared.The magnetic anisotropy of the alloy decreases as x increases from 0 to 0.15.Subsequently,we prepared gia... Spherical Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)(x=0,0.05,0.10 and 0.15)single-crystal particles were prepared.The magnetic anisotropy of the alloy decreases as x increases from 0 to 0.15.Subsequently,we prepared giant magnetostrictive composites with these spherical Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)single-crystal particles.As a consequence,well<111>-orie nted Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)composites with 55 vol%Tb_(0.5)Dy_(0.5)(Fe_(1-x)Mn_(x))_(1.92)particles were obtained.The Tb_(0.5)Dy_(0.5)(Fe_(0.9)Mn_(0.1))_(2)composite manifests a good low-field magnetostrictive property and saturation magnetostriction at an axial pressure of 10 MPa,λ_(‖,saturation)≈2100 ppm,which is larger than that of the commercially available Terfenol-D(1400-1800 ppm).The preparation of composites with single crystal spherical powders may be an effective solution of developing high-performance magnetostrictive composites. 展开更多
关键词 Tb-Dy-Fe-Mn Spherical single-crystal powder MAGNETOSTRICTION Magnetostrictive composites Rare earths
原文传递
Effect of particle size of single-crystalline hierarchical ZSM-5 on its surface mass transfer in n-heptane catalytic cracking 被引量:2
4
作者 Xiaoxue Zhang Shuman Xu +3 位作者 Jing Hao Xiaojin Xie Fengqiu Chen Dangguo Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期148-157,共10页
Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-h... Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability. 展开更多
关键词 single-crystalLINE Hierarchical ZSM-5 particle size Surface barriers n-Heptane catalytic cracking
下载PDF
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:2
5
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 Subgrade filler particles Deep learning particle Shape analysis particle library Compaction characteristics Discrete element method(DEM)
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin 被引量:1
6
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 Pyrolysis reaction of waste resin FLUIDIZATION particle agglomeration KAOLIN
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
7
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
下载PDF
An improved particle filter indoor fusion positioning approach based on Wi-Fi/PDR/geomagnetic field 被引量:1
8
作者 Tianfa Wang Litao Han +5 位作者 Qiaoli Kong Zeyu Li Changsong Li Jingwei Han Qi Bai Yanfei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期443-458,共16页
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s... The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms. 展开更多
关键词 Fusion positioning particle filter Geomagnetic iterative matching Iterative window Constraint window
下载PDF
The research progress of an E//B neutral particle analyzer 被引量:2
9
作者 马龙 屈玉凡 +12 位作者 罗圆 谢德豪 汪彦熹 王硕 曲国峰 任培培 罗小兵 刘星泉 韩纪锋 Roy WADA 林炜平 臧临阁 朱敬军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期10-16,共7页
An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of ... An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak.The E//B NPA contains three main units,i.e.the stripping unit,the analyzing unit and the detection unit.A gas stripping chamber was adopted as the stripping unit.The results of the simulations and beam tests for the stripping chamber are presented.Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit.The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source(ECRIS)platform.The detection unit consists of 32lutetium-yttrium oxyorthosilicate(LYSO)detector modules arranged in two rows.The response functions ofα,hydrogen ions(H^(+),H_(2)^(+)and H_(3)^(+))andγfor a detector module were measured with^(241)Am,^(137)Cs and^(152)Eu sources together with the 50 kV ECRIS platform.The overall results indicate that the designed E//B NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV. 展开更多
关键词 E//B neutral particle analyzer gas stripping lutetium-yttrium oxyorthosilicate electron cyclotron resonance ion source platform
下载PDF
Extended wet sieving method for determination of complete particle size distribution of general soils 被引量:1
10
作者 Shengnan Ma Yi Song +2 位作者 Jiawei Liu Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期242-257,共16页
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth... The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method. 展开更多
关键词 particle size distribution(PSD) General soil SILT CLAY Wet sieving Physical and chemical properties
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
11
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
Insight into the capacity degradation and structural evolution of single-crystal Ni-rich cathodes
12
作者 Xiaodong Zhang Jiao Lin +5 位作者 Ersha Fan Qingrong Huang Su Ma Renjie Chen Feng Wu Li Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期68-76,I0003,共10页
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac... Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials. 展开更多
关键词 single-crystal cathodes Capacity decay Phase transition Differential capacity analysis
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
13
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE particle size Residual resistance coefficient
下载PDF
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
14
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle COATING finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
Surface-to-bulk engineering with high-valence W^(6+) enabling stabilized single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode
15
作者 Jun-Ke Liu Xue-Rui Yang +6 位作者 Chuan-Wei Wang Zu-Wei Yin Yi-Yang Hu Li Deng Zhen Wang Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期67-76,共10页
Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by str... Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes. 展开更多
关键词 single-crystal Ni-rich cathode Surface-to-bulk engineering High-valence cations Structural stability Interfacial side reaction
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
16
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE Mass transfer Wire mesh coupling solid particles particle image velocimetry Hydrodynamics
下载PDF
Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes
17
作者 Jixue Shen Bao Zhang +4 位作者 Changwang Hao Xiao Li Zhiming Xiao Xinyou He Xing Ou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1045-1057,共13页
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic... Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances. 展开更多
关键词 Li/Ni antisite defect Dynamic characteristic HIGH-VOLTAGE single-crystal Ni-rich Co-free cathodes Lithium-ion batteries
下载PDF
Optimizing laser coupling,matter heating,and particle acceleration from solids using multiplexed ultraintense lasers
18
作者 Weipeng Yao Motoaki Nakatsutsumi +20 位作者 Sébastien Buffechoux Patrizio Antici Marco Borghesi Andrea Ciardi Sophia N.Chen Emmanuel d’Humières Laurent Gremillet Robert Heathcote Vojtech Horny Paul McKenna Mark N.Quinn Lorenzo Romagnani Ryan Royle Gianluca Sarri Yasuhiko Sentoku Hans-Peter Schlenvoigt Toma Toncian Olivier Tresca Laura Vassura Oswald Willi Julien Fuchs 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期16-28,共13页
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi... Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams. 展开更多
关键词 laser ACCELERATION particle
下载PDF
State Estimation of Drive-by-Wire Chassis Vehicle Based on Dual Unscented Particle Filter Algorithm
19
作者 Zixu Wang Chaoning Chen +2 位作者 Quan Jiang Hongyu Zheng Chuyo Kaku 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期99-113,共15页
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles... Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states. 展开更多
关键词 Drive-by-wire chassis vehicle Vehicle state estimation Dual unscented particle filter Tire force estimation Unscented particle filter
下载PDF
Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap
20
作者 Salman Beg Deo Raj Kaushal 《Water Science and Engineering》 EI CAS CSCD 2024年第2期166-176,共11页
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime... Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%. 展开更多
关键词 Invert trap Lid thickness particle image velocimetry particle shape factor Turbulent kinetic energy Scanning electron microscope
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部