期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials 被引量:1
1
作者 Yabin JING Lifeng WANG Yuqiang GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1107-1118,共12页
Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave... Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors. 展开更多
关键词 multilayered van der Waals(vd W)metamaterial molecular dynamics(MD) mass-spring model(MSM) dispersion relation transmission characteristic
下载PDF
Dynamic Behavior and Deformation Analysis of the Fish Cage System Using Mass-Spring Model 被引量:4
2
作者 Chun Woo LEE Jihoon LEE Subong PARK 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期311-324,共14页
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being c... Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds. 展开更多
关键词 fish cage mathematical model aquaculture computer simulation mass-spring model
下载PDF
A Three-Stage Cutting Simulation System Based on Mass-Spring Model
3
作者 Xiaorui Zhang Jiali Duan +2 位作者 Wei Sun Tong Xu Sunil Kumar Jha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期117-133,共17页
The cutting simulation of soft tissue is important in virtual surgery.It includes three major challenges in computation:Soft tissue simulation,collision detection,and handling,as well as soft tissue models.In order to... The cutting simulation of soft tissue is important in virtual surgery.It includes three major challenges in computation:Soft tissue simulation,collision detection,and handling,as well as soft tissue models.In order to address the earlier challenges,we propose a virtual cutting system based on the mass-spring model.In this system,MSM is utilized to simulate the soft tissue model.Residual stress is introduced to the model for simulating the shrinking effect of soft tissue in cutting.Second,a cylinder-based collision detection method is used to supervise the collision between surgical tools and soft tissue.Third,we simulate the cutting operation with a three-stage cutting method with swept volume,B´ezier curve,and an algorithm named shortest distance nodes matching method.In order to verify the system performance,we carry out three validation experiments on the proposed system:Cutting accuracy experiment,collision detection validation,and practical cutting evaluation.Experiments indicate that our system can well perform the shrinking effect of soft tissue in cutting.The system has fast and accurate collision detection.Moreover,the system can reconstruct smooth incisions vividly. 展开更多
关键词 mass-spring model collision algorithm virtual surgery soft tissue simulation
下载PDF
A Soft Tissue Acupuncture Model Based on Mass-Spring Force Ne
4
作者 Xiaorui Zhang Tong Xu +2 位作者 Wei Sun Jiali Duan Sunil Kumar Jha 《Computers, Materials & Continua》 SCIE EI 2021年第10期727-745,共19页
In the simulation of acupuncture manipulation,it is necessary to accurately capture the information of acupuncture points and particles around them.Therefore,a soft tissue modeling method that can accurately track mod... In the simulation of acupuncture manipulation,it is necessary to accurately capture the information of acupuncture points and particles around them.Therefore,a soft tissue modeling method that can accurately track model particles is needed.In this paper,a soft tissue acupuncture model based on the mass-spring force net is designed.MSM is used as the auxiliary model and the SHF model is combined.SHF is used to establish a three-layer soft tissue model of skin,fat,and muscle,and a layer of the MSM based force network is covered on the surface of soft tissue to realize the complementary advantages and disadvantages of spherical harmonic function and MSM.In addition,a springback algorithm is designed to simulate the springback phenomenon of soft tissue skin during acupuncture.The evaluation results show that the soft tissue acupuncture modeling method based on mass-spring force net can effectively simulate the springback phenomenon of soft tissue surface during acupuncture surgery,and has good comprehensive performance in the application of virtual acupuncture surgery simulation. 展开更多
关键词 mass-spring model puncture simulation virtual surgery soft tissue simulation
下载PDF
Nonlinear wave dispersion in monoatomic chains with lumped and distributed masses:discrete and continuum models
5
作者 E.GHAVANLOO S.EL-BORGI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期633-648,共16页
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr... The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude. 展开更多
关键词 nonlinear mass-spring chain discrete model continuum model LindstedtPoincare method(LPM) method of multiple scales(MMS) DISPERSION phase velocity
下载PDF
Design and Optimization for the Occupant Restraint System of Vehicle Based on a Single Freedom Model 被引量:6
6
作者 ZHANG Junyuan MA Yue +1 位作者 CHEN Chao ZHANG Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期492-497,共6页
Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety d... Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper. 展开更多
关键词 vehicle crash occupant restraint system concept design single-degree-of-freedom occupant-vehicle model
下载PDF
Probability-based analytical model for predicting the post-earthquake residual deformation of SDOF systems 被引量:1
7
作者 Zhang Qin Gong Susu +2 位作者 Gong Jinxin Zhang Guanhua Xi Guangheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期341-358,共18页
A probability-based analytical model for predicting the seismic residual deformation of bilinear single-degreeof-freedom(SDOF)systems with a kinematic/Takeda hysteretic model is proposed based on a statistical analysi... A probability-based analytical model for predicting the seismic residual deformation of bilinear single-degreeof-freedom(SDOF)systems with a kinematic/Takeda hysteretic model is proposed based on a statistical analysis of the nonlinear time history response,and the proposed model explicitly incorporates the influence of record-to-record variability.In addition,the influence of primary parameters such as the natural vibration period,relative yield force coefficient,stiffness ratio and peak ground acceleration(PGA)on the seismic residual/maximum deformation ratio(dR/dm)are investigated.The results show that significant dispersion of the dR/dm ratio is observed for SDOF systems under different seismic ground motion records,and the dispersion degree is influenced by the model parameters and record-to-record variability.The statistical distribution of the dR/dm results of SDOF systems can be described by a lognormal distribution.Finally,a case study for seismic residual deformation and reparability assessment of the bridge structure designed with a single pier is carried out to illustrate the detailed analytical procedure of the probability-based analytical model proposed in this study. 展开更多
关键词 residual deformation probability model repairability assessment single-degree-of-freedom system nonlinear seismic response record-to-record variability
下载PDF
Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee
8
作者 Hung Truong Thomas Engels +1 位作者 Dmitry Kolomenskiy Kai Schneider 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第6期382-389,共8页
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,f... The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,flexible membrane supported by a network of veins.The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle.In order to analyze the effect of wing flexibility,the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible.The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations,allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee.Compared to the bumblebee model with rigid wings,the one with flexible wings flies more efficiently,characterized by a larger lift-to-power ratio. 展开更多
关键词 Insect flight Wing elasticity mass-spring model Fluid-structure interaction Spectral method Volume penalization method
下载PDF
Real-time Animation Technique for a Kind of Non-rigid Objects
9
作者 宋庆文 Zhou Yuanhua 《High Technology Letters》 EI CAS 2003年第1期47-50,共4页
A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of... A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of O (n ). The new implicit numerical integration technique of the authors, which is based on a simple approximation of the linear system, has great advantages over the existing implicit integration methods. Moreover, experiment shows that the new technique is highly efficient in animating a kind of non-rigid objects, and suitable for the draping module of the 3D garment CAD system. 展开更多
关键词 non-rigid object mass-spring model implicit integration 3D garment CAD
下载PDF
A physics-based approach to motion capture data processing for virtual plant modeling and simulation
10
作者 Boxiang Xiao Sheng Wu Xinyu Guo 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第3期66-76,共11页
Dynamic virtual plant simulation is an attractive research issue in both botany and computer graphics.Data-driven method is an efficient way for motion analysis and animation synthesis.As a widely used tool,motion cap... Dynamic virtual plant simulation is an attractive research issue in both botany and computer graphics.Data-driven method is an efficient way for motion analysis and animation synthesis.As a widely used tool,motion capture has been used in plant motion data acquisition and analysis.The most prominent and important problem in motion capture for plants is primary data processing such as missing markers reconstruction.This paper presents a novel physics-based approach to motion capture data processing of plants.Firstly,a physics-based mechanics model is found by Lagrangian mechanics for a motion captured plant organ such as a leaf,and then its dynamic mechanical properties are analyzed and relevant model parameters are evaluated.Further,by using the physical model with evaluated parameters,we can calculate the next positions of a maker to reconstruct the missing makers in motion capture sequence.We take an example of a maize leaf and pachira leaf to examine the proposed approach,and the results show that the physics-based method is feasible and effective for plant motion data processing. 展开更多
关键词 Physics-based mass-spring model motion capture data processing virtual plant maize.
原文传递
Dynamical Simulation of Cornea Deformation in Laser Surgery
11
作者 GAO Mingxiang CHEN Dingfang YANG Yanfang 《Wuhan University Journal of Natural Sciences》 CAS 2011年第4期332-336,共5页
A dynamical simulation method is presented to model the cornea deformation in surgery of laser thermokeratoplasty. The virtual cornea is constructed as a mass-spring system. The corneal surface tension is simulated by... A dynamical simulation method is presented to model the cornea deformation in surgery of laser thermokeratoplasty. The virtual cornea is constructed as a mass-spring system. The corneal surface tension is simulated by damping spring stretch between mass points on the cornea model. The aqueous humor in the eyeball is modeled as ideal gas, and the intraocular pressure is simulated by gas pressure. The coagulation force is exerted on each photocoagulation spot to demonstrate its collapse caused by the condensation of corneal soft tissue irradiated by laser. An extra viscous drag force is added to each mass point to weaken the mass point oscillation. The use of the effective time-corrected Verlet integral method brings about flowing and stable dynamic simulation procedures. The simulation results show that, comparing to the undeformed model, the curvature of the region between the optical center and photocoagulation spot increases obviously. Moreover, the shape of the deformed virtual cornea is much similar to that of the real cornea after surgery. 展开更多
关键词 dynamical simulation cornea model mass-spring model laser thermokeratoplasty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部