期刊文献+
共找到1,250篇文章
< 1 2 63 >
每页显示 20 50 100
Horizontal structure of convergent wind shear associated with sporadic E layers over East Asia
1
作者 LiHui Qiu Xian Lu +8 位作者 Tao Yu Yosuke Yamazaki HuiXin Liu Yang-Yi Sun HaoNan Wu XiaoMin Zuo XiangXiang Yan Yan Yu YiFan Qi 《Earth and Planetary Physics》 CAS CSCD 2023年第5期548-557,共10页
At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they... At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they cannot capture the whole picture of the horizontal structure of Es layers.This study employs the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension model(WACCM-X 2.1)to derive the horizontal structure of the ion convergence region(HSICR)to explore the shapes of the large-scale Es layers over East Asia for the period from June 1 to August 31,2008.The simulation produced the various shapes of the HSICRs elongated in the northwest-southeast,northeast-southwest,or composed of individual small patches.The close connection between Es layer critical frequency(foEs)and vertical ion convergence indicates that the HSICR is a good candidate for revealing and explaining the horizontal structure of the large-scale Es layers. 展开更多
关键词 sporadic E layer horizontal structure wind shear WACCM-X model
下载PDF
Comparison and Verification of Coherent Doppler Wind Lidar and Radiosonde Data in the Beijing Urban Area
2
作者 Zexu LUO Xiaoquan SONG +4 位作者 Jiaping YIN Zhichao BU Yubao CHEN Yongtao YU Zhenlu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2203-2214,共12页
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition... As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices. 展开更多
关键词 coherent Doppler wind lidar RADIOSONDE wind measurement urban boundary layer
下载PDF
Analysis and Simulation of the Stratospheric Quasi-zero Wind Layer over Korla, Xinjiang Province, China 被引量:3
3
作者 Rui YANG Lingkun RAN +1 位作者 Yuli ZHANG Yi LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1143-1155,共13页
The stratospheric quasi-zero wind layer (QZWL) is a transition region with low zonal wind speeds in the lower stratosphere at an altitude of ~20 km. The zonal wind direction above the QZWL layer is opposite to that be... The stratospheric quasi-zero wind layer (QZWL) is a transition region with low zonal wind speeds in the lower stratosphere at an altitude of ~20 km. The zonal wind direction above the QZWL layer is opposite to that below the QZWL layer and the north –south wind component is small. The atmospheric wind field near the stratospheric QZWL is an important factor affecting the flight altitude and dynamic control of stratospheric airships. It is therefore necessary to study the stratospheric QZWL to provide better environmental information for these aircraft. High-resolution radiosonde data were used to analyze the characteristics of the stratospheric QZWL over Korla, Xinjiang Province, China. A weak wind layer in which the wind direction suddenly reversed from westerly to easterly was observed at ~20 km in the lower stratosphere, characteristic of the stratospheric QZWL. The Weather Research and Forecasting model was used to simulate the profiles of the horizontal wind speed and direction over Korla. The forcing effect of each diagnostic term in the equation on the zonal wind speed was analyzed. The results showed that the advection term was the dominant factor forcing the zonal wind speed. The wave term had a secondary forcing role, although the forcing effect of the wave term on the zonal wind speed was significant in some regions. 展开更多
关键词 numerical simulation radiosonde STRATOSPHERIC AIRSHIPS STRATOSPHERIC quasi-zero wind layer
下载PDF
Impacts of a wind stress and a buoyancy flux on the seasonal variation of mixing layer depth in the South China Sea 被引量:4
4
作者 XIAO Xianjun WANG Dongxiao +4 位作者 ZHOU Wen ZHANG Zuqiang QIN Yinghao HE Na ZENG Lili 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第9期30-37,共8页
The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy- ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of... The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy- ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD. It is found that the variability of MLD in the SCS is shallow in summer and deep in winter, as is the case in general. Owing to local atmosphere forcing and ocean dynamics, the seasonal variability shows a regional characteristic in the SCS. In the northern SCS, the MLD is shallow in summer and deep in winter, affected coherently by the wind stress and the buoyance flux. The variation of MLD in the west is close to that in the central SCS, influenced by the advection of strong western boundary currents. The eastern SCS presents an annual cycle, which is deep in summer and shallow in winter, primarily impacted by a heat flux on the air-sea interface. So regional characteristic needs to be cared in the analysis about the MLD of SCS. 展开更多
关键词 wind stress buoyance flux mixed layer South China Sea
下载PDF
The research on boundary layer evolution characteristics of Typhoon Usagi based on observations by wind profilers 被引量:3
5
作者 LIAO Fei DENG Hua +1 位作者 GAO Zhiqiu CHAN Pak-wai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第9期39-44,共6页
Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoo... Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi based on the observational data of three boundary layer wind profiler stations along the route of Typhoon Usagi(No. 1319) and by combining with sounding data. The results show that:(1) maximum tangential wind appears in the vicinity of the eye area of Usagi, and it basically maintains a height of around 1 800 m when Usagi keeps a strong typhoon level, with the rapidly decreasing strength of Usagi after it lands, the speed of the maximum tangential wind and its vertical range both decrease;(2) the height of the maximum tangential wind is close to that of the inflow layer top of the typhoon, and is greater than that of the boundary layer estimated on the basis of Richardson number or potential temperature gradient, while the height of mixed layer judged on the basis of the signal-to-noise ratio(SNR) or its gradient is usually low;(3) the the boundary layer height can reach higher than2 100 m before Usagi lands. When the typhoon level or above is achieved, the boundary layer height observed by various stations does not change much, basically staying at between 1 200 and 1 600 m. With the decreasing strength of Usagi after its landfall, the boundary layer height rapidly drops. 展开更多
关键词 TYPHOON boundary layer height wind profiler SOUNDING
下载PDF
Structures and Characteristics of the Windy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges 被引量:3
6
作者 CHENG Xue-Ling HUANG Jian +1 位作者 WU Lin ZENG Qing-Cun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期772-782,共11页
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main struc... An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations (period 〈 1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances (1 rain〈period 〈 10 min) are anisotropic with rather strong coherency. However, in the windy atmospheric boundary layer at sea, compared with that over land, there are some pronounced differences: (1) the average horizontal speed is almost independent of height, and the vertical velocity is positive in the lower marine atmospheric boundary layer; (2) the vertical flux of horizontal momentum is nearly independent of height in the low layer indicating the existence of a constant flux layer, unlike during strong wind over the land surface; (3) the kinetic energy and friction velocity of turbulent fluctuations are larger than those of gusty disturbances; (4) due to the independence of horizontal speed to height, the horizontal speed itself (not its vertical gradient used over the land surface) can be used as the key parameter to parameterize the turbulent and gusty characteristics with high accuracy. 展开更多
关键词 TURBULENCE wind gust coherent structure cold surge windy marine atmospheric boundary layer
下载PDF
Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer 被引量:1
7
作者 Chao LIU Li FU +2 位作者 Dan YANG David R.MILLER Junming WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期90-104,共15页
Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochas... Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochastic(LS)models describe stochastic wind behaviors,such models assume that wind velocities follow Gaussian distributions.However,measured surface-layer wind velocities show a strong skewness and kurtosis.This paper presents an improved model,a non-Gaussian LS model,which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis.Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study,October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model.Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model,such as the accuracy in the mean and variance of simulated velocities.This improvement also leads to better accuracy in friction velocity(i.e.,a coupling of three-dimensional velocities).The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations.Moreover,improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations.Thus,the non-Gaussian model is worth applying to wind field simulation in the surface layer. 展开更多
关键词 Lagrangian stochastic model wind field simulation non-Gaussian wind velocity surface layer
下载PDF
Gustiness and coherent structure under weak wind period in atmospheric boundary layer 被引量:2
8
作者 Li Qi-Long Cheng Xue-Ling Zeng Qing-Cun 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第1期52-59,共8页
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-th... Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer. 展开更多
关键词 Atmospheric boundary layer gusty wind coherent structure weak wind downward flux of momentum
下载PDF
Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone 被引量:1
9
作者 唐晓东 谈哲敏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第5期737-749,共13页
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components ... In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually. 展开更多
关键词 boundary-layer wind tropical cyclone LANDFALL surface drag
下载PDF
Wind Structure in an Intermediate Boundary Layer Model Based on Ekman Momentum Approximation
10
作者 谈哲敏 王元 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第2期266-278,共13页
A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s... A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s scheme was included to improve the theoretical model proposed by Tan and Wu (1993). The model could keep the same complexity as the classical Ekman model in numerical, but extends the conventional Ekman model to include the horizontal accelerated flow with the Ekman momentum approximation. A comparison between this modified Ekman model and other simplified accelerating PBL models is made. Results show that the Ekman model overestimates (underestimates) the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow due to the neglect of the acceleration flow, however, the semi–geostrophic Ekman model overestimates the acceleration effects resulting from the underestimating (overestimating) of the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow. The Ekman momentum approximation boundary layer model could be applied to the baroclinic atmosphere. The baroclinic Ekman momentum approximation boundary layer solution has both features of classical baroclinic Ekman layer and the Ekman momentum approximate boundary lager. 展开更多
关键词 wind structure Ekman momentum approximation Boundary layer model
下载PDF
Convection:a neglected pathway for downward transfer of wind energy in the oceanic mixed layer
11
作者 ZHANG Yu WANG Wei 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第4期1189-1197,共9页
Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we rep... Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy(TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O(1)TW, comparable to that required by maintaining the Meridional Overturning Circulation(MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models. 展开更多
关键词 convective mixed layer convecting plumes turbulent kinetic energy (TKE) wind energy surface waves
下载PDF
Recent Development of Reluctance Machines with Different Winding Configurations,Excitation Methods,and Machine Structures 被引量:1
12
作者 X.Y.Ma G.J.Li +1 位作者 G.W.Jewell Z.Q.Zhu 《CES Transactions on Electrical Machines and Systems》 2018年第1期82-92,共11页
This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double la... This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar􀫚120°elec.,unipolar/bipolar􀫚180°elec.,bipolar􀫛240°elec.and bipolar􀫜360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions. 展开更多
关键词 Double/single layer windings excitation methods fully/short-pitched mutually coupled modular machines switched/synchronous reluctance machines
下载PDF
Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar
13
作者 Lu WANG Wei QIANG +3 位作者 Haiyun XIA Tianwen WEI Jinlong YUAN Pu JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1920-1928,共9页
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f... Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively. 展开更多
关键词 boundary layer height coherent Doppler wind lidar carrier-to-noise ratio turbulent kinetic energy dissipation rate
下载PDF
The Wind Structure in Planetary Boundary Layer
14
作者 赵鸣 徐银梓 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第3期365-376,共12页
The investigations on the dynamies of the PBL have been developed in recent years. Some authors emphasized macro-dynamics and others emphasized micro-structure of the PBL. In this paper, we study and review some main ... The investigations on the dynamies of the PBL have been developed in recent years. Some authors emphasized macro-dynamics and others emphasized micro-structure of the PBL. In this paper, we study and review some main characteristics of the wind field in the PBL from the view point connecting the macro-dynamics and micro-stucture of the PBL, thus providing the physical basis for the further research of the dynamics and the parameterization of the PBL. 展开更多
关键词 The wind Structure in Planetary Boundary layer PBL
下载PDF
Layered Multi-mode Optimal Control Strategy for Multi-MW Wind Turbine
15
作者 孔屹刚 王志新 《Journal of Donghua University(English Edition)》 EI CAS 2008年第3期317-323,共7页
The control strategy is one of the most important renewable technology,and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch(VS-VP)technology.The main objective of... The control strategy is one of the most important renewable technology,and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch(VS-VP)technology.The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy.But the power generated by wind turbine changes rapidly because of the continuous fluctuation of wind speed and direction.At the same time,wind energy conversion systems are of high order,time delays and strong nonlinear characteristics because of many uncertain factors.Based on analyzing the all dynamic processes of wind turbine,a kind of layered multi-mode optimal control strategy is presented which is that three control strategies:bang-bang,fuzzy and adaptive proportional integral derivative(PID)are adopted according to different stages and expected performance of wind turbine to capture optimum wind power,compensate the nonlinearity and improve the wind turbine performance at low,rated and high wind speed. 展开更多
关键词 layered multi-mode optimal control doubly- fed induction generator DFIG variable speed-variable pitch (VS-VP) multi-MW wind generator simulation
下载PDF
Computation and Measurement of Winding Tension in Ring Spinning 被引量:2
16
作者 叶国铭 吴文英 陈瑞琪 《Journal of China Textile University(English Edition)》 EI CAS 1998年第4期22-26,共5页
By studying the variations of balloon height and of wind-ing radius in any one winding layer of ring spinning, the formula for determining the winding tension in any layer is derived, and then the overall tension vari... By studying the variations of balloon height and of wind-ing radius in any one winding layer of ring spinning, the formula for determining the winding tension in any layer is derived, and then the overall tension variation throughout all winding layers can be computed. A meth-od of measuring the winding tension is also introduced here, with the measured results agreeing with the com-puted ones, and so the reliable relationship between winding tension, speed and ring traveller weight can be thus obtained. The highest allowable spindle speed is also discussed. 展开更多
关键词 ring SPINNING winding mechanism YARN ten-sion tension measurement winding tension BALLOON CURVE winding layer.
全文增补中
Characteristics of atmospheric boundary layer structure and its influencing factors under different sea and land positions in Europe
17
作者 YeHui Zhang XinPeng Yong +2 位作者 HouFu Zhou HaiYang Gao Na Yang 《Earth and Planetary Physics》 EI CSCD 2023年第2期257-268,共12页
This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observati... This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observations.The spatial variability of the BLH is further discussed by location,by classifying recording stations as inland,coastal,or bay.We find that the BLH in Europe varies considerably from day to night and with the seasons.Nighttime BLH is higher in winter and lower in summer,with the highest BLH recorded at coastal stations.Daytime BLH at coastal stations shows a bimodal structure with peaks in spring and autumn;at inland and bay stations,daytime BLH is lower in winter and higher in summer.The daily amplitudes of BLH at the inland and bay stations are stronger than those at coastal stations.Based on our multiple linear regression analysis and our decoupling analysis of temperature and specific humidity,we report that the development of the nighttime BLH at all types of stations is strongly dominated by the variations of surface wind speed(and,at coastal stations,wind directions).The main contributors to daytime BLH are the near-surface temperature variability at most coastal and inland stations,and,at most bay stations,the variation of the near-surface specific humidity. 展开更多
关键词 atmospheric boundary layer height wind surface temperature specific humidity DECOUPLING
下载PDF
Wind-Driven,Double-Gyre,Ocean Circulation in a Reduced-Gravity,2.5-Layer,Lattice Boltzmann Model
18
作者 钟霖浩 冯士德 +1 位作者 罗德海 高守亭 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期561-578,共18页
A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integ... A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interarmual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes. 展开更多
关键词 Lattice Boltzmann model 2.5-layer reduced-gravity model wind-driven ocean circulation multiple equilibria solutions low-frequency mode
下载PDF
星-三角接法的分数槽永磁电机匝间短路故障分析 被引量:1
19
作者 陈浈斐 凌志豪 +2 位作者 范晨阳 李志新 万向民 《电力自动化设备》 EI CSCD 北大核心 2024年第1期181-187,共7页
为了分析永磁电机绕组采用星-三角(Y-△)接法时发生匝间短路故障后对电机的影响,建立了绕组在Y-△接法下分别在星形(Y)接法部分和角形(△)接法部分发生匝间短路故障的电路模型,推导得到故障发生后电机三相电流。以10极12槽永磁电机为例... 为了分析永磁电机绕组采用星-三角(Y-△)接法时发生匝间短路故障后对电机的影响,建立了绕组在Y-△接法下分别在星形(Y)接法部分和角形(△)接法部分发生匝间短路故障的电路模型,推导得到故障发生后电机三相电流。以10极12槽永磁电机为例进行二维有限元仿真,对传统的Y接法双层绕组永磁电机和Y-△接法4层绕组永磁电机发生匝间短路故障的情况进行对比分析。仿真结果表明:在Y-△接法下匝间短路故障位置的不同对电流会有很大影响;在发生匝间短路故障后Y-△接法能降低电机的转矩脉动,降低故障发生后故障相电流中的3次谐波幅值。 展开更多
关键词 永磁电机 匝间短路 短路电流 星-三角接法 4层绕组
下载PDF
超强台风“莫兰蒂”(1614)边界层结构的风廓线雷达观测分析
20
作者 汪学渊 汪澜 +1 位作者 郑陈婷 郭建平 《热带气象学报》 CSCD 北大核心 2024年第3期352-361,共10页
利用翔安风廓线雷达和厦门探空雷达资料,对2016年超强台风“莫兰蒂”外雨带(距离台风中心120~220 km)和外围晴空(距离台风中心400~630 km)边界层结构进行观测分析,结果表明:在超强台风“莫兰蒂”外雨带,风廓线雷达反演的最大切向风速高... 利用翔安风廓线雷达和厦门探空雷达资料,对2016年超强台风“莫兰蒂”外雨带(距离台风中心120~220 km)和外围晴空(距离台风中心400~630 km)边界层结构进行观测分析,结果表明:在超强台风“莫兰蒂”外雨带,风廓线雷达反演的最大切向风速高度分布在入流层下方0.5~1.0 km处,并且随着台风中心的靠近,最大切向风速和入流层高度都有降低的趋势,受降雨粒子的影响,风廓线雷达只能定性反映台风外雨带最大切向风速高度和入流层高度分布特征。在超强台风“莫兰蒂”外围晴空天气下,最大切向风速高度与入流层高度具有一致性,其边界层高度变化比较平稳,高度分布在1.2~1.6 km之间,能够定量反映台风外围晴空边界层高度分布;相对于传统热力驱动的湍流,台风系统边界层湍流主要由风切变驱动,台风外围湍流活动的增强主要发生在最大切向风速高度附近,除了风切变还有其他比较重要的驱动源,表明在台风边界层顶部附近有更加复杂的湍流活动,需要更加精细的湍流通量试验确定其来源。 展开更多
关键词 风廓线雷达 最大切向风速高度 入流层高度 边界层结构
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部