In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re...In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.展开更多
Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmi...Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmission of electric energy.However,factors such as topology,control strategy,and short-circuit capacities make the traditional protection principles not fully applicable to LCC-VSC hybrid transmission systems.To enhance the reliability of hybrid DC systems,a single-ended principle based on transmission coefficients is proposed and produced.First,the equivalent circuit of the LCC-VSC hybrid DC system is analyzed and the expression of the first traveling wave is deduced accordingly.Then,the concept of multi-frequency transmission coefficients is proposed by analyzing the amplitude-frequency,and the characteristics of each element.Finally,the LCC-VSCDC system model is built to verify the reliability and superiority of the principle itself.Theoretical analysis and experimental verification show that the principle has strong interference resistance.展开更多
The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter,where this affects their capacity for power generation as well as their safety.Accurately identifying the icin...The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter,where this affects their capacity for power generation as well as their safety.Accurately identifying the icing of the blades of wind turbines in remote areas is thus important,and a general model is needed to this end.This paper proposes a universal model based on a Deep Neural Network(DNN)that uses data from the Supervisory Control and Data Acquisition(SCADA)system.Two datasets from SCADA are first preprocessed through undersampling,that is,they are labeled,normalized,and balanced.The features of icing of the blades of a turbine identified in previous studies are then used to extract training data from the training dataset.A middle feature is proposed to show how a given feature is correlated with icing on the blade.Performance indicators for the model,including a reward function,are also designed to assess its predictive accuracy.Finally,the most suitable model is used to predict the testing data,and values of the reward function and the predictive accuracy of the model are calculated.The proposed method can be used to relate continuously transferred features with a binary status of icing of the blades of the turbine by using variables of the middle feature.The results here show that an integrated indicator systemis superior to a single indicator of accuracy when evaluating the prediction model.展开更多
北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了...北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。展开更多
基金This research was funded by the Basic Research Funds for Universities in Inner Mongolia Autonomous Region(No.JY20220272)the Scientific Research Program of Higher Education in InnerMongolia Autonomous Region(No.NJZZ23080)+3 种基金the Natural Science Foundation of InnerMongolia(No.2023LHMS05054)the NationalNatural Science Foundation of China(No.52176212)We are also very grateful to the Program for Innovative Research Team in Universities of InnerMongolia Autonomous Region(No.NMGIRT2213)The Central Guidance for Local Scientific and Technological Development Funding Projects(No.2022ZY0113).
文摘In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmission of electric energy.However,factors such as topology,control strategy,and short-circuit capacities make the traditional protection principles not fully applicable to LCC-VSC hybrid transmission systems.To enhance the reliability of hybrid DC systems,a single-ended principle based on transmission coefficients is proposed and produced.First,the equivalent circuit of the LCC-VSC hybrid DC system is analyzed and the expression of the first traveling wave is deduced accordingly.Then,the concept of multi-frequency transmission coefficients is proposed by analyzing the amplitude-frequency,and the characteristics of each element.Finally,the LCC-VSCDC system model is built to verify the reliability and superiority of the principle itself.Theoretical analysis and experimental verification show that the principle has strong interference resistance.
基金supported by the National Natural Science Foundation of China under Grant No.61573138.
文摘The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter,where this affects their capacity for power generation as well as their safety.Accurately identifying the icing of the blades of wind turbines in remote areas is thus important,and a general model is needed to this end.This paper proposes a universal model based on a Deep Neural Network(DNN)that uses data from the Supervisory Control and Data Acquisition(SCADA)system.Two datasets from SCADA are first preprocessed through undersampling,that is,they are labeled,normalized,and balanced.The features of icing of the blades of a turbine identified in previous studies are then used to extract training data from the training dataset.A middle feature is proposed to show how a given feature is correlated with icing on the blade.Performance indicators for the model,including a reward function,are also designed to assess its predictive accuracy.Finally,the most suitable model is used to predict the testing data,and values of the reward function and the predictive accuracy of the model are calculated.The proposed method can be used to relate continuously transferred features with a binary status of icing of the blades of the turbine by using variables of the middle feature.The results here show that an integrated indicator systemis superior to a single indicator of accuracy when evaluating the prediction model.
文摘北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。