Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int...Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in...This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.展开更多
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an...This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.展开更多
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption...The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.展开更多
A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected...A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected from 25 wells by intensive groundwater sampling conducted during January 2010. All the major ions, pH and electrical conductivity were analyzed. The abundances of cations were in the order of Na <Ca <Mg <K and those of anions were in the order of Cl <HCO3 <SO4 <CO3, respectively. This was in agreement with the water types, Na-Cl and Na-Ca-HCO3, determined by the Piper plot. High concentrations of the ions Na, Cl and SO4 were recorded near the tanneries that operate within the study area. While the elevated concentrations of HCO3 and F were observed away from the tanneries. This peculiar hydrochemical behaviour suggests that the chemistry of water is predominantly influenced by tannery effluents and weathering of silicate minerals. Results of the linear regression model yielded 11 regression equations for the 5 most correlated parameters. A dendrogram from the cluster analysis showed 2 major clusters representing the influence of tanneries and geological formations in the study area, which confirmed the results of major ion chemistry.展开更多
When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the ...When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ...Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.展开更多
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle...Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.展开更多
Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed...Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.展开更多
In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is...In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study.展开更多
In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subj...In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using the proposed selection rule, the mis-selection error can be controlled uniformly.展开更多
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not...The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49).展开更多
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the...The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results.展开更多
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studie...Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation ofpiecewise linear regression models. The method used to estimate the parameters ofpicewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC (Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters ofpicewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.展开更多
This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis a...This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.展开更多
基金This work was supported by the 2021 Project of the“14th Five-Year Plan”of Shaanxi Education Science“Research on the Application of Educational Data Mining in Applied Undergraduate Teaching-Taking the Course of‘Computer Application Technology’as an Example”(SGH21Y0403)the Teaching Reform and Research Projects for Practical Teaching in 2022“Research on Practical Teaching of Applied Undergraduate Projects Based on‘Combination of Courses and Certificates”-Taking Computer Application Technology Courses as an Example”(SJJG02012)the 11th batch of Teaching Reform Research Project of Xi’an Jiaotong University City College“Project-Driven Cultivation and Research on Information Literacy of Applied Undergraduate Students in the Information Times-Taking Computer Application Technology Course Teaching as an Example”(111001).
文摘Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
文摘This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.
基金Research supported By AFOSC, USA, under Contract F49620-85-0008oy NNSFC of China.
文摘This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.
基金Supported by project of National Natural Science Foundation of China(No.41272360)
文摘The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.
文摘A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected from 25 wells by intensive groundwater sampling conducted during January 2010. All the major ions, pH and electrical conductivity were analyzed. The abundances of cations were in the order of Na <Ca <Mg <K and those of anions were in the order of Cl <HCO3 <SO4 <CO3, respectively. This was in agreement with the water types, Na-Cl and Na-Ca-HCO3, determined by the Piper plot. High concentrations of the ions Na, Cl and SO4 were recorded near the tanneries that operate within the study area. While the elevated concentrations of HCO3 and F were observed away from the tanneries. This peculiar hydrochemical behaviour suggests that the chemistry of water is predominantly influenced by tannery effluents and weathering of silicate minerals. Results of the linear regression model yielded 11 regression equations for the 5 most correlated parameters. A dendrogram from the cluster analysis showed 2 major clusters representing the influence of tanneries and geological formations in the study area, which confirmed the results of major ion chemistry.
文摘When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
基金Under the auspices of National Natural Science Foundation of China (No. 50809004)
文摘Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.
文摘Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.
基金Supported by the National Natural Science Foundation of China(11901236)the Scientific Research Fund of Hunan Provincial Science and Technology Department(2019JJ50479)+3 种基金the Scientific Research Fund of Hunan Provincial Education Department(18B322)the Winning Bid Project of Hunan Province for the 4th National Economic Census([2020]1)the Young Core Teacher Foundation of Hunan Province([2020]43)the Funda-mental Research Fund of Xiangxi Autonomous Prefecture(2018SF5026)。
文摘Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.
文摘In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study.
文摘In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using the proposed selection rule, the mis-selection error can be controlled uniformly.
文摘The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49).
文摘The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results.
文摘Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation ofpiecewise linear regression models. The method used to estimate the parameters ofpicewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC (Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters ofpicewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.
基金Thank you for your valuable comments and suggestions.This research was supported by Yunnan applied basic research project(NO.2017FD150)Chuxiong Normal University General Research Project(NO.XJYB2001).
文摘This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points.