Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important...Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
To making the decision of the developing blue prints,ideal point method was selected to estimate the life cycle cost with effectiveness of torpedo.At the same time,the concept of grey relational entropy of the grey sy...To making the decision of the developing blue prints,ideal point method was selected to estimate the life cycle cost with effectiveness of torpedo.At the same time,the concept of grey relational entropy of the grey system theory was adopted to compute the distance between each blue print and the ideal point(or negative ideal point).The blue print,nearest to the ideal point and farthest to the negative ideal point,is the best one.As an example,four blue prints of torpedo were estimated.The result indicates the practical value of this method.展开更多
It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the sol...It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.展开更多
The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Ra...The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.展开更多
The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomn...The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomness of loading and the theory of fatigue damage accumulation (TOFDA) are considered. The probabilistic analysis of local stress, local strain and fatigue life are constructed based on the first-order Taylor's series expansions. Through this method proposed fatigue reliability analysis can be accomplished.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences ...This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences according to both classification methods;and second the geomagnetic effect on foF2 diurnal variation profiles as defined for the equatorial latitudes. The occurrences of the different disturbed geomagnetic activities (recurrent activity (RA), shock activity (SA) and fluctuant activity (FA)) according to both classifications (ancient classification (AC) and new classification (NC)) have been studied at Dakar ionosonde station (Lat: 14.8°N;Long: 342.6°E). Regarding both classifications, the RA occurs more during the decreasing phase. And it’s observed that the RA occurs the most during the increasing phase for the AC and during the minimum phase for the NC. The maximum gap of occurrence (<img src="Edit_e4627ea9-9a9a-4473-9017-202d04a16377.bmp" alt="" /><span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">11.1%</span><span style="font-family:Verdana;"> (for the negative value which is observed during the increasing phase) and </span><span style="font-family:Verdana;">+16.74%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). The occurrence of the SA in relation with both classifications is the lowest during the minimum phase and the maximum occurrence is observed during the maximum and decreasing phases, for the AC, with a value close to </span><span style="font-family:Verdana;">37%</span><span style="font-family:Verdana;"> and for the NC at the maximum phase with a percentage of </span><span style="font-family:Verdana;">54.47%</span><span><span style="font-family:Verdana;">. The maximum gap of occurrence (</span><img src="Edit_20fa141b-ecee-4e06-8024-144ba0969395.bmp" alt="" /></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">17.85%</span><span style="font-family:Verdana;"> (for the negative value which is observed at maximum phase) and </span><span style="font-family:Verdana;">+13.53%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). For both classifications, the FA occurs the least during the minimum phase and the most during the maximum phase for the AC and at maximum and decreasing phases with percentage values of occurrence of roughly </span><span style="font-family:Verdana;">37%</span><span><span style="font-family:Verdana;"> for the NC. The maximum gap of occurrence (</span><img src="Edit_eecb8939-783e-4d43-b92c-80c528c1890b.bmp" alt="" /><span style="font-family:Verdana;"></span></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span>10% (for the negative value which is observed during the decreasing phase) and </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+20.11%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the maximum phase). foF2 diurnal profiles throughout solar cycle phases concerning the AC and the NC have been compared. The FA diurnal profiles don’t present a difference. The RA and the SA present a difference during minimum and increasing phases and the least at maximum and decreasing phases.</span></span></span>展开更多
Sensor nodes are easily compromised to malicious attackers due to an open environment. A false injected attack which takes place on application layer is elected by the compromised node. If the false report arrives in ...Sensor nodes are easily compromised to malicious attackers due to an open environment. A false injected attack which takes place on application layer is elected by the compromised node. If the false report arrives in a base station, a false alarm is occurred, and the energy of the nodes is consumed. To detect the false report, statistical en-route filtering method is proposed. In this paper, we proposed the secure path cycle selection method using fuzzy rule-based system to consume effective energy. The method makes balanced energy consumption of each node. Moreover, the lifetime of the whole network will be increased. The base station determines the path cycle using the fuzzy rule-based system. The performance of the proposed method is demonstrated using simulation studies with the three methods.展开更多
For facing the challenges brought by large-scale renewable energy having access to the system and considering the key technologies of energy Internet,it is very necessary to put forward the location method of distribu...For facing the challenges brought by large-scale renewable energy having access to the system and considering the key technologies of energy Internet,it is very necessary to put forward the location method of distribution network equipment and capacity from the perspective of life cycle cost.Compared with the traditional energy network,the equipment capacity problem of energy interconnected distribution network which involves in electricity network,thermal energy network and natural gas network is comprehensively considered in this paper.On this basis,firstly,the operation architecture of energy interconnected distribution network is designed.Secondly,taking the grid connection location and configuration capacity of key equipment in the system as the control variables and the operation cost of system comprehensive planning in the whole life cycle as the goal,the equipment location and capacity optimization model of energy interconnected distribution network is established.Finally,an IEEE 33 bus energy mutual distribution grid system is taken for example analysis,and the improved chaotic particle swarmoptimization algorithm is used to solve it.The simulation results show that the method proposed in this paper is suitable for the equipment location and capacity planning of energy interconnected distribution network,and it can effectively improve the social and economic benefits of system operation.展开更多
Based on modem financial markets becoming more and more perfect, in company stock, bonds, represented by the investment banking has permeated all aspects of life. Business valuation is the core of value management.How...Based on modem financial markets becoming more and more perfect, in company stock, bonds, represented by the investment banking has permeated all aspects of life. Business valuation is the core of value management.However, companies in different stages of development have a certain stage characteristics, and therefore from the features and characteristics of the different stages of business valuation methods and the factors that affect the value of different businesses created to start, can provide investors assess the business value of new ideas.展开更多
In this paper, an optimal V-cycle multigrid method for some conforming and nonconforming plate elements are constructed. A new method dealing with nonnested multigrid methods is presented.
A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average met...A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.展开更多
Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum produ...Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.展开更多
This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a...This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a set of indicators reflecting specific criteria for the evaluation of nuclear fuel cycle options are defined. Particular attention is devoted to the resource utility efficiency, environmental effect, human health hazard and economic effect, which represent the different concerns of different stakeholders. This methodology also integrated a special mathematic processing approach, namely the Extentics Evaluation Method, which quantifies the human being subjective perception to provide the intuitionistic judgement and comparison for different options. The once-through option and reprocessing option of nuclear fuel cycle are examined by using the proposed methodology. The assessment process and result can give us some guidance in nuclear fuel cycle evaluation under the constraint of limited data.展开更多
Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion a...Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact.展开更多
Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding bead...Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.展开更多
Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, an...Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.展开更多
Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life beha...Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with tem- perature increasing was discussed. At low and intermediate total strain amplitudes, the fatigue life was found to decrease with increasing temperature.展开更多
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test ...The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.展开更多
文摘Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金the Doctorate Foundation of Northwestern Polytechnical University (Grant No.CX200304)
文摘To making the decision of the developing blue prints,ideal point method was selected to estimate the life cycle cost with effectiveness of torpedo.At the same time,the concept of grey relational entropy of the grey system theory was adopted to compute the distance between each blue print and the ideal point(or negative ideal point).The blue print,nearest to the ideal point and farthest to the negative ideal point,is the best one.As an example,four blue prints of torpedo were estimated.The result indicates the practical value of this method.
基金supported by the National Natural Science Foundation of China under Grant numbers U2031202,U1731124 and U1531247the special foundation work of the Ministry of Science and Technology of the People’s Republic of China under Grant number 2014FY120300the 13th Five-year Informatization Plan of Chinese Academy of Sciences under Grant number XXH13505-04。
文摘It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.
基金Project(51778626) supported by the National Natural Science Foundation of China
文摘The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.
文摘The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomness of loading and the theory of fatigue damage accumulation (TOFDA) are considered. The probabilistic analysis of local stress, local strain and fatigue life are constructed based on the first-order Taylor's series expansions. Through this method proposed fatigue reliability analysis can be accomplished.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
文摘This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences according to both classification methods;and second the geomagnetic effect on foF2 diurnal variation profiles as defined for the equatorial latitudes. The occurrences of the different disturbed geomagnetic activities (recurrent activity (RA), shock activity (SA) and fluctuant activity (FA)) according to both classifications (ancient classification (AC) and new classification (NC)) have been studied at Dakar ionosonde station (Lat: 14.8°N;Long: 342.6°E). Regarding both classifications, the RA occurs more during the decreasing phase. And it’s observed that the RA occurs the most during the increasing phase for the AC and during the minimum phase for the NC. The maximum gap of occurrence (<img src="Edit_e4627ea9-9a9a-4473-9017-202d04a16377.bmp" alt="" /><span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">11.1%</span><span style="font-family:Verdana;"> (for the negative value which is observed during the increasing phase) and </span><span style="font-family:Verdana;">+16.74%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). The occurrence of the SA in relation with both classifications is the lowest during the minimum phase and the maximum occurrence is observed during the maximum and decreasing phases, for the AC, with a value close to </span><span style="font-family:Verdana;">37%</span><span style="font-family:Verdana;"> and for the NC at the maximum phase with a percentage of </span><span style="font-family:Verdana;">54.47%</span><span><span style="font-family:Verdana;">. The maximum gap of occurrence (</span><img src="Edit_20fa141b-ecee-4e06-8024-144ba0969395.bmp" alt="" /></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">17.85%</span><span style="font-family:Verdana;"> (for the negative value which is observed at maximum phase) and </span><span style="font-family:Verdana;">+13.53%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). For both classifications, the FA occurs the least during the minimum phase and the most during the maximum phase for the AC and at maximum and decreasing phases with percentage values of occurrence of roughly </span><span style="font-family:Verdana;">37%</span><span><span style="font-family:Verdana;"> for the NC. The maximum gap of occurrence (</span><img src="Edit_eecb8939-783e-4d43-b92c-80c528c1890b.bmp" alt="" /><span style="font-family:Verdana;"></span></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span>10% (for the negative value which is observed during the decreasing phase) and </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+20.11%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the maximum phase). foF2 diurnal profiles throughout solar cycle phases concerning the AC and the NC have been compared. The FA diurnal profiles don’t present a difference. The RA and the SA present a difference during minimum and increasing phases and the least at maximum and decreasing phases.</span></span></span>
文摘Sensor nodes are easily compromised to malicious attackers due to an open environment. A false injected attack which takes place on application layer is elected by the compromised node. If the false report arrives in a base station, a false alarm is occurred, and the energy of the nodes is consumed. To detect the false report, statistical en-route filtering method is proposed. In this paper, we proposed the secure path cycle selection method using fuzzy rule-based system to consume effective energy. The method makes balanced energy consumption of each node. Moreover, the lifetime of the whole network will be increased. The base station determines the path cycle using the fuzzy rule-based system. The performance of the proposed method is demonstrated using simulation studies with the three methods.
基金The authors received specific funding for State Grid Corporation Headquarters Project Support,Key Technologies and Applications of Planning and Decision-Making Based on the Full Cost Chain of the Power Grid,Grant No.5205331800001.
文摘For facing the challenges brought by large-scale renewable energy having access to the system and considering the key technologies of energy Internet,it is very necessary to put forward the location method of distribution network equipment and capacity from the perspective of life cycle cost.Compared with the traditional energy network,the equipment capacity problem of energy interconnected distribution network which involves in electricity network,thermal energy network and natural gas network is comprehensively considered in this paper.On this basis,firstly,the operation architecture of energy interconnected distribution network is designed.Secondly,taking the grid connection location and configuration capacity of key equipment in the system as the control variables and the operation cost of system comprehensive planning in the whole life cycle as the goal,the equipment location and capacity optimization model of energy interconnected distribution network is established.Finally,an IEEE 33 bus energy mutual distribution grid system is taken for example analysis,and the improved chaotic particle swarmoptimization algorithm is used to solve it.The simulation results show that the method proposed in this paper is suitable for the equipment location and capacity planning of energy interconnected distribution network,and it can effectively improve the social and economic benefits of system operation.
文摘Based on modem financial markets becoming more and more perfect, in company stock, bonds, represented by the investment banking has permeated all aspects of life. Business valuation is the core of value management.However, companies in different stages of development have a certain stage characteristics, and therefore from the features and characteristics of the different stages of business valuation methods and the factors that affect the value of different businesses created to start, can provide investors assess the business value of new ideas.
基金The rescarch was supported by the Doctoral Point Foundation of chinese Universities and NSF
文摘In this paper, an optimal V-cycle multigrid method for some conforming and nonconforming plate elements are constructed. A new method dealing with nonnested multigrid methods is presented.
文摘A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.
基金Projects (71003018,71373003) supported by the National Natural Science Foundation of ChinaProjects (N110402003,N120302004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (13YJCZH172) supported by the Ministry of Education of China of Humanities and Social Sciences
文摘Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.
文摘This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a set of indicators reflecting specific criteria for the evaluation of nuclear fuel cycle options are defined. Particular attention is devoted to the resource utility efficiency, environmental effect, human health hazard and economic effect, which represent the different concerns of different stakeholders. This methodology also integrated a special mathematic processing approach, namely the Extentics Evaluation Method, which quantifies the human being subjective perception to provide the intuitionistic judgement and comparison for different options. The once-through option and reprocessing option of nuclear fuel cycle are examined by using the proposed methodology. The assessment process and result can give us some guidance in nuclear fuel cycle evaluation under the constraint of limited data.
基金Supported by Doctoral Foundation of Henan Polytechnic University(Grant No.B2012-101)Opening Project of Key Laboratory of Precision Manufacturing Technology and Engineering of Henan Polytechnic University,China(Grant No.PMTE201318A)Henan Provincial Science and Technology Research Projects of Education Department of China(Grant No.14B460033)
文摘Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact.
基金CONACyT-México for the scholarship providedCONACyT (Project 736)SIP-IPN are also acknowledged for funds given to conduct this research
文摘Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.
基金Supports provided by Aviation Basic Science Foundation(00B53010)Aerospace Science Foundation(N3CH0502)Shaanxi Province Natural Science Foundation(N3CS0501)are gratefully appreciated.
文摘Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.
文摘Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with tem- perature increasing was discussed. At low and intermediate total strain amplitudes, the fatigue life was found to decrease with increasing temperature.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA05A109,2008AA11A104)International S&T Cooperation Program of China(ISTCP)(No.2011DFA70570,2010DFA72760)
文摘The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.