We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave pr...We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.展开更多
In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathema...In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.展开更多
The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment,...The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.展开更多
Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information und...In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information under the first and second non-response cases separately.The required theoretical comparisons are obtained and the numerical studies are conducted.In conclusion,the results show that the proposed family of estimators is the most efficient estimator with respect to the estimators in literature under the obtained conditions for both cases.展开更多
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Redd...We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.展开更多
A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. ...A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.展开更多
We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponent...We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.展开更多
In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponentia...In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.展开更多
By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybri...By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.展开更多
The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presente...The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.展开更多
Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Th...Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.展开更多
We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponent...We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.展开更多
In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is ...In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.展开更多
Following a six-step flow chart, exponentially-fitted variant of the 2-step Simpson’s method suitable for solving ordinary differential equations with periodic/oscillatory behaviour is constructed. The qualitative pr...Following a six-step flow chart, exponentially-fitted variant of the 2-step Simpson’s method suitable for solving ordinary differential equations with periodic/oscillatory behaviour is constructed. The qualitative properties of the constructed methods are also investigated. Numerical experiments on standard problems confirming the theoretical expectations regarding the constructed methods compared with other existing standard methods are also presented. Our results unify and improve the existing classical 2-step Simpson’s method.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore...A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.展开更多
An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet.Using similarity transformations in exponential form,the governing boundary layer equations are transformed into...An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet.Using similarity transformations in exponential form,the governing boundary layer equations are transformed into self-similar nonlinear ordinary differential equations,which are then solved numerically using a very efficient shooting method.The analysis reveals the conditions for the existence of steady boundary layer flow due to exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical value,steady flow is possible.The dual solutions for velocity and temperature distributions are obtained.With increasing values of the mass suction parameter,the skin friction coefficient increases for the first solution and decreases for the second solution.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
基金part supported by the NSF Grants DMS-1912654 and DMS 2205590。
文摘We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.
文摘In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.
文摘The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
文摘In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information under the first and second non-response cases separately.The required theoretical comparisons are obtained and the numerical studies are conducted.In conclusion,the results show that the proposed family of estimators is the most efficient estimator with respect to the estimators in literature under the obtained conditions for both cases.
文摘We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.
文摘A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.
基金The project supported by National Natural Science Foundation of China under Grant No.19902002
文摘We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.
基金supported by the Scientific and Technological Research Council of Turkey(Grant No.113F394)
文摘In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
基金the Science Technology Foundation of Ministry of Machine_ Buildin
文摘By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.
基金Supported by National Natural Science Foundation of China(10571036)the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金Projects(02JJY2006, 03JJY2001) supported by Natural Science Foundation of Hunan Province project supported by JSPS Fellowship Research Program
文摘The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.
文摘Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.
基金The project supported by Liu Hui Applied Mathematics Center of Nankai University and 985 Education Development Plan of Tianjin University
文摘We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.
文摘In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.
文摘Following a six-step flow chart, exponentially-fitted variant of the 2-step Simpson’s method suitable for solving ordinary differential equations with periodic/oscillatory behaviour is constructed. The qualitative properties of the constructed methods are also investigated. Numerical experiments on standard problems confirming the theoretical expectations regarding the constructed methods compared with other existing standard methods are also presented. Our results unify and improve the existing classical 2-step Simpson’s method.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by the National Natural Science Foundation of China (70571083)the Research Fund for the Doctoral Program of Higher Education of China (20094307110013)
文摘A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.
基金by the National Board for Higher Mathematics(NBHM),DAE,Mumbai,India.
文摘An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet.Using similarity transformations in exponential form,the governing boundary layer equations are transformed into self-similar nonlinear ordinary differential equations,which are then solved numerically using a very efficient shooting method.The analysis reveals the conditions for the existence of steady boundary layer flow due to exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical value,steady flow is possible.The dual solutions for velocity and temperature distributions are obtained.With increasing values of the mass suction parameter,the skin friction coefficient increases for the first solution and decreases for the second solution.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.