In order to investigate the influence of bottleneck on single-file pedestrian flow,we conduct two different bottleneck experiments.The first one is on ring road,while the second one is on straight route.For the first ...In order to investigate the influence of bottleneck on single-file pedestrian flow,we conduct two different bottleneck experiments.The first one is on ring road,while the second one is on straight route.For the first one,the global density is always set to be 1.5 ped/m.The corresponding critical flow rate for the bottleneck activation is about 0.57 ped/s.The data of the detectors set at different locations,including the velocities and time-headways,show that the amplitude of the oscillation of the stop-and-go waves gradually increases during the upstream propagation.Besides,when the measured flow rates are the same,the different situations in the single-file experiments with and without bottleneck are compared and discussed.For the second one,lower flow rates are used and the bottleneck is always activated.In all the runs,the system can reach one stable state,and the time needed is nearly the same.Inside the stable area,the statistics of pedestrians'velocities keeps nearly constant in both time and space.Outside this area,when the waiting time is not long(X=10 s),the phenomenon observed is similar to that found on ring road,e.g.,the statistics of pedestrians'velocities also gradually increases during the upstream propagation.This phenomenon is similar to that found in vehicular traffic flow,which shows the universality of different traffic flows.But when the waiting time becomes longer(X=20 s),this situation will be broken since the actions of many pedestrians become much slower.All these results can facilitate understanding more about the influence of bottleneck on single-file pedestrian flow.展开更多
Campus security has aroused many concerns from the whole society.Stampede is one of the most frequent and influential accidents in campus.Studies on pedestrian dynamics especially focusing on students are essential fo...Campus security has aroused many concerns from the whole society.Stampede is one of the most frequent and influential accidents in campus.Studies on pedestrian dynamics especially focusing on students are essential for campus security,which are helpful to improve facility design and emergency evacuation strategy.In this paper,primary and middle school students were recruited to participate in the single-file experiments.The microscopic movement characteristics,including walking speed,headway,gait characteristics(step length,step frequency and swaying amplitude)and their relations were investigated.Age and gender differences in the headway-speed diagram and space requirements were analyzed by statistical tests.The results indicated that the impacts of age and gender were significant.There were three stages for the influence of gender on the headway-speed diagram for both age groups.The impacts on students'space requirements were consistent for different age and gender groups.But the impacts of age and gender on free-flow speed were affected by each other.Due to the connection of walking speed and gait characteristics,the comparisons of gait characteristics between different ages and genders were performed to understand the corresponding differences in speed more deeply.The results showed that differences in step length and swaying amplitude between males and females were significant for both age groups.The effect of gender on step frequency was significant for primary students.But for middle school students,whether gender had significant impact on step frequency was not clear here because of the large P-value.Besides,the influence of age on gait characteristics changed with gender.展开更多
One-dimensional ordered water molecules entering and exiting from a carbon nanotube with an appropriate radius are studied with molecular dynamics simulations.It can be found that a water molecule near the nanotube en...One-dimensional ordered water molecules entering and exiting from a carbon nanotube with an appropriate radius are studied with molecular dynamics simulations.It can be found that a water molecule near the nanotube end is more likely to be expelled from the nanotube if its dipole is almost perpendicular to the nanotube axis.The key to this observation is that those water molecules are closer to the wall of the nanotube away from the equilibrium position of the Lennar-Jones (LJ) potential.Thus,the interaction energy for those water molecules is relatively high.There are two particular structures of the perpendicular water molecule depending on the dipole direction of the adjacent water molecule in the nanotube.Although the probabilities of these structures are quite small,their contributions to the net flux across the nanotube end are approximately equal to the predominant structures.The present findings further show the possibility of controlling the water flow by regulating the dipole directions of the water molecules inside the nanochannels.展开更多
Stop-and-go waves are commonly observed in traffic and pedestrian flows.In most microscopic traffic models,they occur through a phase transition and instability of the homogeneous solution after fine tuning of paramet...Stop-and-go waves are commonly observed in traffic and pedestrian flows.In most microscopic traffic models,they occur through a phase transition and instability of the homogeneous solution after fine tuning of parameters.Inertia effects are believed to play an important role in this mechanism.In this article,we present a novel explanation for stop-and-go waves based on stochastic effects in the absence of inertia.The model used is a first order optimal velocity(OV)model including an additive stochastic noise.A power spectral analysis for single-file pedestrian trajectories highlights the existence of Brownian speed residuals.We use the Ornstein-Uhlenbeck process to describe such a correlated noise.The introduction of this specific colored noise in the first order OV model allows describing realistic stop-and-go behavior without requiring instabilities or phase transitions,the homogeneous configurations being systematically stochastically stable.We compare the stochastic model to deterministic unstable OV models and analyze individual speed autocorrelation to describe the nature of the waves in stationary states.We apply the approach to pedestrian single-file motion and compare simulation results to real pedestrian trajectories.The simulation results are quantitatively very similar to the real trajectories.We discuss plausible values for the model parameters and their meaning.展开更多
基金the National Natural Science Foundation of China(Grant Nos.71801036,71971056,71621001,and 11302022)the Fundamental Research Funds for the Central Universities,China.
文摘In order to investigate the influence of bottleneck on single-file pedestrian flow,we conduct two different bottleneck experiments.The first one is on ring road,while the second one is on straight route.For the first one,the global density is always set to be 1.5 ped/m.The corresponding critical flow rate for the bottleneck activation is about 0.57 ped/s.The data of the detectors set at different locations,including the velocities and time-headways,show that the amplitude of the oscillation of the stop-and-go waves gradually increases during the upstream propagation.Besides,when the measured flow rates are the same,the different situations in the single-file experiments with and without bottleneck are compared and discussed.For the second one,lower flow rates are used and the bottleneck is always activated.In all the runs,the system can reach one stable state,and the time needed is nearly the same.Inside the stable area,the statistics of pedestrians'velocities keeps nearly constant in both time and space.Outside this area,when the waiting time is not long(X=10 s),the phenomenon observed is similar to that found on ring road,e.g.,the statistics of pedestrians'velocities also gradually increases during the upstream propagation.This phenomenon is similar to that found in vehicular traffic flow,which shows the universality of different traffic flows.But when the waiting time becomes longer(X=20 s),this situation will be broken since the actions of many pedestrians become much slower.All these results can facilitate understanding more about the influence of bottleneck on single-file pedestrian flow.
基金Project supported by the Social Science Foundation of Beijing(Grant No.19GLC078)the Fundamental Research Funds for the Central Universities,China(Grant No.2019JKF429).
文摘Campus security has aroused many concerns from the whole society.Stampede is one of the most frequent and influential accidents in campus.Studies on pedestrian dynamics especially focusing on students are essential for campus security,which are helpful to improve facility design and emergency evacuation strategy.In this paper,primary and middle school students were recruited to participate in the single-file experiments.The microscopic movement characteristics,including walking speed,headway,gait characteristics(step length,step frequency and swaying amplitude)and their relations were investigated.Age and gender differences in the headway-speed diagram and space requirements were analyzed by statistical tests.The results indicated that the impacts of age and gender were significant.There were three stages for the influence of gender on the headway-speed diagram for both age groups.The impacts on students'space requirements were consistent for different age and gender groups.But the impacts of age and gender on free-flow speed were affected by each other.Due to the connection of walking speed and gait characteristics,the comparisons of gait characteristics between different ages and genders were performed to understand the corresponding differences in speed more deeply.The results showed that differences in step length and swaying amplitude between males and females were significant for both age groups.The effect of gender on step frequency was significant for primary students.But for middle school students,whether gender had significant impact on step frequency was not clear here because of the large P-value.Besides,the influence of age on gait characteristics changed with gender.
基金supported by the National Natural Science Foundation of China (No. 10825520)the Innovation Program of Shanghai Municipal Education Commission (No. 11YZ20)
文摘One-dimensional ordered water molecules entering and exiting from a carbon nanotube with an appropriate radius are studied with molecular dynamics simulations.It can be found that a water molecule near the nanotube end is more likely to be expelled from the nanotube if its dipole is almost perpendicular to the nanotube axis.The key to this observation is that those water molecules are closer to the wall of the nanotube away from the equilibrium position of the Lennar-Jones (LJ) potential.Thus,the interaction energy for those water molecules is relatively high.There are two particular structures of the perpendicular water molecule depending on the dipole direction of the adjacent water molecule in the nanotube.Although the probabilities of these structures are quite small,their contributions to the net flux across the nanotube end are approximately equal to the predominant structures.The present findings further show the possibility of controlling the water flow by regulating the dipole directions of the water molecules inside the nanochannels.
基金Financial support by the German Science Foundation under grant SCHA 636/9-1 is gratefully acknowledged.
文摘Stop-and-go waves are commonly observed in traffic and pedestrian flows.In most microscopic traffic models,they occur through a phase transition and instability of the homogeneous solution after fine tuning of parameters.Inertia effects are believed to play an important role in this mechanism.In this article,we present a novel explanation for stop-and-go waves based on stochastic effects in the absence of inertia.The model used is a first order optimal velocity(OV)model including an additive stochastic noise.A power spectral analysis for single-file pedestrian trajectories highlights the existence of Brownian speed residuals.We use the Ornstein-Uhlenbeck process to describe such a correlated noise.The introduction of this specific colored noise in the first order OV model allows describing realistic stop-and-go behavior without requiring instabilities or phase transitions,the homogeneous configurations being systematically stochastically stable.We compare the stochastic model to deterministic unstable OV models and analyze individual speed autocorrelation to describe the nature of the waves in stationary states.We apply the approach to pedestrian single-file motion and compare simulation results to real pedestrian trajectories.The simulation results are quantitatively very similar to the real trajectories.We discuss plausible values for the model parameters and their meaning.