The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO...The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.展开更多
The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is l...The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additi...To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning...This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.展开更多
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picki...In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.展开更多
For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tos...For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.展开更多
The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm ...The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.展开更多
A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t...A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.展开更多
This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increas...This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
In the recent years,microarray technology gained attention for concurrent monitoring of numerous microarray images.It remains a major challenge to process,store and transmit such huge volumes of microarray images.So,i...In the recent years,microarray technology gained attention for concurrent monitoring of numerous microarray images.It remains a major challenge to process,store and transmit such huge volumes of microarray images.So,image compression techniques are used in the reduction of number of bits so that it can be stored and the images can be shared easily.Various techniques have been proposed in the past with applications in different domains.The current research paper presents a novel image compression technique i.e.,optimized Linde–Buzo–Gray(OLBG)with Lempel Ziv Markov Algorithm(LZMA)coding technique called OLBG-LZMA for compressing microarray images without any loss of quality.LBG model is generally used in designing a local optimal codebook for image compression.Codebook construction is treated as an optimizationissue and can be resolved with the help of Grey Wolf Optimization(GWO)algorithm.Once the codebook is constructed by LBGGWO algorithm,LZMA is employed for the compression of index table and raise its compression efficiency additionally.Experiments were performed on high resolution Tissue Microarray(TMA)image dataset of 50 prostate tissue samples collected from prostate cancer patients.The compression performance of the proposed coding esd compared with recently proposed techniques.The simulation results infer that OLBG-LZMA coding achieved a significant compression performance compared to other techniques.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the pr...With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.展开更多
Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
Now in modern telecommunication, one of the big topic research is a Vehicle Ad-hoc Network “VANET” (V2V). This topic is one of an “issues of the day” because research has problematic topic due to its many applicat...Now in modern telecommunication, one of the big topic research is a Vehicle Ad-hoc Network “VANET” (V2V). This topic is one of an “issues of the day” because research has problematic topic due to its many application-questions, what we need to solve: avoid collisions, any accidents on a way, and notifications about congestions on the road, available car parking, road-side commercial-business ads, and etcetera. These like application forms creating big delay constraining’s i.e. the instant data should reach the destination within certain time limits. Therefore, we need a really efficient stable clustering method and routing in vehicle ad-hoc network which will be resistant to network delays and meets network requirements. The methods are proposed in the paper for optimization VANETs data traffic as well as to minimizing delay. First, here is presented, a stable clustering algorithm based on the destination, contextually take into consideration various physical parameters for cluster formation such as location of the vehicle and its direction, vehicle speed and destination, as well as a possible list of interests of the vehicle. And also the next main process is to depend on these “five parameters” we can calculate the “Cluster Head Eligibility” of each car. Second, based on this “Cluster Head Eligibility”, described cluster head selection method. Third, for efficient communication between clusters, present a routing protocol based on the “destination”, which considered an efficient selecting method of next forwarding nodes, which is calculated by using “FE” metric.展开更多
基金financial support extended for this academic work by the Beijing Natural Science Foundation(Grant 2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.
基金from funding agencies in the public,commercial,or not-for-profit sectors.
文摘The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
基金The National Natural Science Foundation of China (No.60473029,60673072).
文摘To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
文摘This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
文摘In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.
基金The National Natural Science Foundation of China(No.61471164)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0133)
文摘For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.
文摘The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736,in part by the Teaching Reform Project of Higher Education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038,and in part by the Graduate Academic Innovation Project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19。
文摘A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.
基金supported by the National Natural Science Foundation of China(61671468)。
文摘This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
文摘In the recent years,microarray technology gained attention for concurrent monitoring of numerous microarray images.It remains a major challenge to process,store and transmit such huge volumes of microarray images.So,image compression techniques are used in the reduction of number of bits so that it can be stored and the images can be shared easily.Various techniques have been proposed in the past with applications in different domains.The current research paper presents a novel image compression technique i.e.,optimized Linde–Buzo–Gray(OLBG)with Lempel Ziv Markov Algorithm(LZMA)coding technique called OLBG-LZMA for compressing microarray images without any loss of quality.LBG model is generally used in designing a local optimal codebook for image compression.Codebook construction is treated as an optimizationissue and can be resolved with the help of Grey Wolf Optimization(GWO)algorithm.Once the codebook is constructed by LBGGWO algorithm,LZMA is employed for the compression of index table and raise its compression efficiency additionally.Experiments were performed on high resolution Tissue Microarray(TMA)image dataset of 50 prostate tissue samples collected from prostate cancer patients.The compression performance of the proposed coding esd compared with recently proposed techniques.The simulation results infer that OLBG-LZMA coding achieved a significant compression performance compared to other techniques.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金supported by the Aeronautical Science Foundation of China(20111052010)the Jiangsu Graduates Innovation Project (CXZZ120163)+1 种基金the "333" Project of Jiangsu Provincethe Qing Lan Project of Jiangsu Province
文摘With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘Now in modern telecommunication, one of the big topic research is a Vehicle Ad-hoc Network “VANET” (V2V). This topic is one of an “issues of the day” because research has problematic topic due to its many application-questions, what we need to solve: avoid collisions, any accidents on a way, and notifications about congestions on the road, available car parking, road-side commercial-business ads, and etcetera. These like application forms creating big delay constraining’s i.e. the instant data should reach the destination within certain time limits. Therefore, we need a really efficient stable clustering method and routing in vehicle ad-hoc network which will be resistant to network delays and meets network requirements. The methods are proposed in the paper for optimization VANETs data traffic as well as to minimizing delay. First, here is presented, a stable clustering algorithm based on the destination, contextually take into consideration various physical parameters for cluster formation such as location of the vehicle and its direction, vehicle speed and destination, as well as a possible list of interests of the vehicle. And also the next main process is to depend on these “five parameters” we can calculate the “Cluster Head Eligibility” of each car. Second, based on this “Cluster Head Eligibility”, described cluster head selection method. Third, for efficient communication between clusters, present a routing protocol based on the “destination”, which considered an efficient selecting method of next forwarding nodes, which is calculated by using “FE” metric.