We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s...We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.展开更多
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation...Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.展开更多
By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at t...By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effec...In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.展开更多
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the...This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.展开更多
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i...This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using differen...The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.展开更多
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s...RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.展开更多
A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respect...A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.展开更多
The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-...The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.展开更多
We investigate single-axis acoustic levitation using standing waves to levitate particles freely in a medium bounded by a driver and a reflector. The acoustic pressure at the pressure antinode of the standing wave cou...We investigate single-axis acoustic levitation using standing waves to levitate particles freely in a medium bounded by a driver and a reflector. The acoustic pressure at the pressure antinode of the standing wave counteracts the downward gravitational force of the levitating object. The optimal relationship between the air gap and the driving frequency leads to resonance and hence maximization of the levitating force. Slight deviation from the exact resonance condition causes a reduction in acoustic pressure at the pressure antinodes. This results in a significant reduction of the levitating force. The driving frequency is kept constant while the air gap is varied for different conditions. The optimal air gap for maximizing the levitation force is studied for first three resonance modes. Furthermore, a levitating particle is introduced between the driver and the reflector. The dependence of the resonance condition on the size of the levitating particle as well as the position of the particle between the driver and the reflector has also been studied. As the size of the levitating particle increases, the resonance condition also gets modified. Finite element results show a good agreement with the validated results available in the literature. Furthermore, the finite element approach is also used to study the variation of acoustic pressure at the pressure antinode with respect to the size of the reflector. The optimum diameter of the reflector is calculated for maximizing the levitating force for three resonance modes.展开更多
Based on the indirect Trefftz approach, a wave number method (WNM) is proposed to deal with three-dimensional steady-state acoustic problems. In the WNM, the dynamic pressure response variable is approximated by a s...Based on the indirect Trefftz approach, a wave number method (WNM) is proposed to deal with three-dimensional steady-state acoustic problems. In the WNM, the dynamic pressure response variable is approximated by a set of wave functions, which exactly satisfy the Helmholtz equation. The set of wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions. The unknown coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions. Compared with the boundary element method (BEM), the WNM have a smaller system matrix, and is applicable to the radiation problems since the wave functions are independent of the domain size. A 3D acoustic cavity is exemplified to show the properties of the method. The results show that the wave number method is more efficient than the BEM, and it is fairly accurate.展开更多
An efficient and accurate method for solving the two-dimensional Helmholtz equation in domains exterior to elongated obstacles is developed in this paper.The method is based on the so called transformed field expansio...An efficient and accurate method for solving the two-dimensional Helmholtz equation in domains exterior to elongated obstacles is developed in this paper.The method is based on the so called transformed field expansion(TFE) coupled with a spectral-Galerkin solver for elliptical domain using Mathieu functions.Numerical results are presented to show the accuracy and stability of the proposed method.展开更多
In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three ...In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.展开更多
This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the...This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the SBM,the concept of the origin intensity factor(OIF)is introduced to avoid the singularities of the fundamental solutions.The SBM belongs to the meshless boundary collocation methods.The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently.Consequently,by using the SBM coupled with the CHIEF scheme and the self-regularization technique,the accuracy of the numerical solution can be improved,especially near the corresponding internal characteristic frequencies.Several numerical examples of two-dimensional and threedimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the proposed method.The proposed numerical results are compared with the analytical solutions and the solutions obtained by the other numerical methods.展开更多
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T...In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.展开更多
Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce ...Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce the step spatial size and increase the order of difference,will multiply the calculation amount and reduce the efficiency of solving wave equation.The optimal nearly analytic discrete(ONAD)method can accurately solve the wave equation by using the combination of displacement and gradient of spatial nodes to approach the spatial partial derivative under rough grid and high-frequency condition.In this study,the ONAD method is introduced into the field of reverse-time migration(RTM)for performing forward-and reverse-time extrapolation of a two-dimensional acoustic equation,and the RTM based on ONAD method is realized via normalized cross-correlation imaging condition,effectively suppressed the numerical dispersion and improved the imaging accuracy.Using ONAD method to image the groove model and SEG/EAGE salt dome model by RTM,and comparing with the migration sections obtained by staggered-grid finite difference method with the same time order 2 nd and space order 4 th,results show that the RTM based on ONAD method can effectively suppress numerical dispersion caused by the high frequency components in source and shot records,and archive accurate imaging of complex geological structures especially the fine structure,and the migration sections of the measured data show that ONAD method has practical application value.展开更多
基金partially supported by the NSF(Grant Nos.2012046,2152011,and 2309534)partially supported by the NSF(Grant Nos.DMS-1715178,DMS-2006881,and DMS-2237534)+1 种基金NIH(Grant No.R03-EB033521)startup fund from Michigan State University.
文摘We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.
基金Project supported by the National Natural Science Foundation of China(No.10172038),the Doctoral Foundation ofthe National Education Ministry(No.20040487013)and the Natural Science Foundation of Guangxi(No.0339019).
文摘Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.
基金Project supported by the National Natural Science Foundation of China (No. 10172038).
文摘By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金the National Natural Science Foundation of China under Grant No.10474016.
文摘In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.
基金Project supported by the National Natural Science Foundation of China(No.11074170)the State Key Laboratory Foundation of Shanghai Jiao Tong University(No.MSVMS201105)
文摘This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974115)
文摘This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
文摘The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.
基金financially supported by Key Technologies R&D Program of Shandong Province(2015GSF115018)Natural Science Foundation of Shandong Province(ZR2013FL027+1 种基金ZR2013DM 014)Youth Foundation of Shandong Academy of Science(2013QN030)
文摘RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.
基金Project supported by the National Natural Science Foundation of China (No.10472035).
文摘A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.
基金supported by the National Natural Science Foundation of China (NSFC) under contract granted No. 41474110Research Foundation of China University of Petroleum-Beijing at Karamay under contract number RCYJ2018A-01-001
文摘The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.
基金Supported by the Science and Engineering Research Board under Grant No YSS/2015/001245
文摘We investigate single-axis acoustic levitation using standing waves to levitate particles freely in a medium bounded by a driver and a reflector. The acoustic pressure at the pressure antinode of the standing wave counteracts the downward gravitational force of the levitating object. The optimal relationship between the air gap and the driving frequency leads to resonance and hence maximization of the levitating force. Slight deviation from the exact resonance condition causes a reduction in acoustic pressure at the pressure antinodes. This results in a significant reduction of the levitating force. The driving frequency is kept constant while the air gap is varied for different conditions. The optimal air gap for maximizing the levitation force is studied for first three resonance modes. Furthermore, a levitating particle is introduced between the driver and the reflector. The dependence of the resonance condition on the size of the levitating particle as well as the position of the particle between the driver and the reflector has also been studied. As the size of the levitating particle increases, the resonance condition also gets modified. Finite element results show a good agreement with the validated results available in the literature. Furthermore, the finite element approach is also used to study the variation of acoustic pressure at the pressure antinode with respect to the size of the reflector. The optimum diameter of the reflector is calculated for maximizing the levitating force for three resonance modes.
文摘Based on the indirect Trefftz approach, a wave number method (WNM) is proposed to deal with three-dimensional steady-state acoustic problems. In the WNM, the dynamic pressure response variable is approximated by a set of wave functions, which exactly satisfy the Helmholtz equation. The set of wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions. The unknown coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions. Compared with the boundary element method (BEM), the WNM have a smaller system matrix, and is applicable to the radiation problems since the wave functions are independent of the domain size. A 3D acoustic cavity is exemplified to show the properties of the method. The results show that the wave number method is more efficient than the BEM, and it is fairly accurate.
基金supported in part by NSF grant DMS-0610646supported by AcRF Tier 1 Grant RG58/08+1 种基金Singapore MOE Grant T207B2202Singapore NRF2007IDM-IDM002-010
文摘An efficient and accurate method for solving the two-dimensional Helmholtz equation in domains exterior to elongated obstacles is developed in this paper.The method is based on the so called transformed field expansion(TFE) coupled with a spectral-Galerkin solver for elliptical domain using Mathieu functions.Numerical results are presented to show the accuracy and stability of the proposed method.
文摘In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.
基金supported by the National Science Fund of China(Grant No.12122205)the Six Talent Peaks Project in Jiangsu Province of China(Grant No.2019-KTHY-009).
文摘This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the SBM,the concept of the origin intensity factor(OIF)is introduced to avoid the singularities of the fundamental solutions.The SBM belongs to the meshless boundary collocation methods.The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently.Consequently,by using the SBM coupled with the CHIEF scheme and the self-regularization technique,the accuracy of the numerical solution can be improved,especially near the corresponding internal characteristic frequencies.Several numerical examples of two-dimensional and threedimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the proposed method.The proposed numerical results are compared with the analytical solutions and the solutions obtained by the other numerical methods.
基金sponsored by Natural Science Foundation of Henan under Grant No.222300420498.
文摘In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.
基金financially supported by the National Key R&D Program of China(No.2018YFC1405900)the National Natural Science Foundation of China(No.41674118)+1 种基金the Fundamental Research Funds for the Central Universities(No.201822011)the National Science and Technology Major Project(No.2016ZX05027-002)。
文摘Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce the step spatial size and increase the order of difference,will multiply the calculation amount and reduce the efficiency of solving wave equation.The optimal nearly analytic discrete(ONAD)method can accurately solve the wave equation by using the combination of displacement and gradient of spatial nodes to approach the spatial partial derivative under rough grid and high-frequency condition.In this study,the ONAD method is introduced into the field of reverse-time migration(RTM)for performing forward-and reverse-time extrapolation of a two-dimensional acoustic equation,and the RTM based on ONAD method is realized via normalized cross-correlation imaging condition,effectively suppressed the numerical dispersion and improved the imaging accuracy.Using ONAD method to image the groove model and SEG/EAGE salt dome model by RTM,and comparing with the migration sections obtained by staggered-grid finite difference method with the same time order 2 nd and space order 4 th,results show that the RTM based on ONAD method can effectively suppress numerical dispersion caused by the high frequency components in source and shot records,and archive accurate imaging of complex geological structures especially the fine structure,and the migration sections of the measured data show that ONAD method has practical application value.