The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of singl...The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.展开更多
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper...Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.展开更多
Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damag...Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a simi...In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.展开更多
To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerica...To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.展开更多
In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed ...In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.展开更多
基金National Natural Science Foundation of China,Grant No.59895410
文摘The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.
基金This work is supported by the National Natural Science Foundation of China(Nos.51578491 and 52238001).
文摘Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.51478335).
文摘Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
基金National Natural Science Foundation of China under Grant No.51278008the National Key Research and Development Plan of China under Grant No.2016YFC0701103
文摘In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.
基金The National Key Technology R&D Program of China(No.2012BAJ03B06)the National Natural Science Foundation of China(No.51308105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Southeast University(No.KYLX_0152,SJLX_0084,KYLX_0149)
文摘To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.
基金supported by the National Natural Science Foundation of China (Grant No. 90715005)the New Century Excellent Talent of Ministry of Education of China (Grant No. NCET-07-0186)the Doctoral Fund of Ministry of China (Grant No. 200802860007)
文摘In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.