Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin...Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes.展开更多
Electronic structures and optical properties of single-layer In1-xGaxN are studied by employing Heyd-Scuseria-Ernzerh(HSE) method based on the first-principles. The band structure and density of states(DOS) of sin...Electronic structures and optical properties of single-layer In1-xGaxN are studied by employing Heyd-Scuseria-Ernzerh(HSE) method based on the first-principles. The band structure and density of states(DOS) of single-layer In1-xGaxN are calculated, and the band gap ranges from 1.8 eV to 3.8 eV as the ratio x changes, illustrating the potential for the tunability of band gap values via Ga doped. We also have investigated optical properties of single-layer In1-xGaxN such as dielectric function, refractive index and absorption coefficient, the main peak of dielectric function spectrum and the absorption edge are found to have a remarkable blue-shift as the concentration of Ga increases. Furthermore, the optical properties of single-layer In1-xGaxN are analyzed based on the band structures and DOS analysis. Such unique optical properties have profound application in nanoelectronics and optical devices.展开更多
The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predict...The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.展开更多
The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer lat...The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.展开更多
To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failur...To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.展开更多
In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex str...In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that superco...High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that supercon- ductivity is mediated by fluctuations associated with the nearby magnetism. Here we report the discovery of a new superconductivity dome without low-energy magnetic fluctuations in LaFeAsO1-xFx with 0.25 ≤ x ≤ 0.75, where the maximal critical temperature Tc at Xopt =0.5-0.55 is even higher than that at x ≤0.2. By nuclear magnetic resonance and transmission electron microscopy, we show that a C4 rotation symmetry-breaking struc- tural transition takes place for x 〉 0.5 above To. Our results point to a new paradigm of high temperature superconductivity.展开更多
This article discusses the problems of the dynamic computation for thin-walled structures such as thin plates and thin shells under impact load to find the dynamic factor mainly. In calculation we take into account th...This article discusses the problems of the dynamic computation for thin-walled structures such as thin plates and thin shells under impact load to find the dynamic factor mainly. In calculation we take into account the effect of the mass of the striking object and the system of thin-walled structures to be struck and transform the distributed mass of thin-walled structures into only one concentrated 'equivalent mass' by the method of reduced mass. Accordingly we derive the dynamic factor for the system of thin-walled structures under impact load.展开更多
The paper presents a selected group of tension-strut structural systems designed for the construction of lightweight dome covers of large spans, which can be comparatively easy to assembly and have rises of which can ...The paper presents a selected group of tension-strut structural systems designed for the construction of lightweight dome covers of large spans, which can be comparatively easy to assembly and have rises of which can be relatively small. This will allow significant decrease costs of erection and maintenance of objects covered by these roof structures. The proposed systems have been obtained from the results of suitable transformations of a chosen type of double-layer space frame and an appropriate arrangement of tetrahedron modules in the space of each of the newly designed type of the structural system. All these systems are built by means of concentric hoops having their own integral spatial stiffness obtained after an appropriate pre-stressing. Particular hoops can be mounted on the ground level and then one by one will be hoisted to the designed positions where they will be connected by means of special sets of the tension members. Due to these structural features, the assembly process of each system should be relatively simple, fast and not expensive. The whole tension-strut structure has to be connected to the compression perimeter ring and suitably pre-stressed. There are presented visualizations of the proposed systems prepared on the basis of the appropriate numerical models especially defined for each particular structure.展开更多
Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of ...Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.展开更多
Many equiaxial dome-like structures developed in the north segment of the Xuefengshan orocline, Central China are obviously inconcordant with the NE-trending linear structures in this area, which contain important rec...Many equiaxial dome-like structures developed in the north segment of the Xuefengshan orocline, Central China are obviously inconcordant with the NE-trending linear structures in this area, which contain important records for understanding the structural framework and evolution of this belt. In this paper, taking one of the typical dome-like structures in the Xuefengshan orcline (e.g. Moping dome-like structure) as an example, based on its structural framework interpratatoin, superposed deformation analysis and paleo-stress fields reconstruction, we propose the Moping dome- like structure is composed of two populations of different-striking thrust-fold structures, -E-trending and NE-striking structures, indicative of two-stages shortening, -N- and NW-striking, respectively. Together with the geochronological analysis, we suggest the first stage of shortening occurred in Late Triassic to Early Jurassic, due to the Indosinian intercollisional orogeny of the Yangtze Block and the North China Block. The second occurred during Late Jurassic-Early Cretaceous owing to Yanshanian intracontinental orogeny, leading to the intensive superposition of the NE-trending structures onto the -E-trending structures, and the final ocurrence of the Moping dome. Thus, our study indicates the Xuefengshan arc-shape belt also experienced two-phase deformation, and resulted from the superposition of NE-SW structures onto -E-W structures in Late Jurassic-Early Cretaceous, which could provide new structural evidence for probing the Mesozoic tectonic framework and evolution of the Xuefengshan orocline.展开更多
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ...The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.展开更多
The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was ...The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was optimized based on the requirement of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for type lI CNG storage vessels, was proposed by a process of review and analysis of various existing shapes, and the minimum thickness was established in this sequence: metal liners, composite materials and dome parts. Therefore, the new proposed shape products give a mass reduction of 4.8 kg(5.1%)展开更多
Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone...Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone in the overlapping parts of Koreh Bas right fault zone. The origin of this diapir is evaporative series of Hormuz, at the beginning of the Cambrian and ending Precambrian age. In this paper, we investigated tectonic structures around the salt dome of Mangerak. By promoting this salt dome, a variety of structures, such as marginal reverse faults, radial normal faults, folds and caves have been developed. In addition, many changes can be seen in the status line, and the amount and direction of the strata dip, thickness of rock units, and facies change, that all showed the downbuilding phenomenon in the diapir. The method was based on structural desert surveys and relevant measurements. The results show that salt domes above were rising during the Late Cretaceous-Paleocene, and pre-deformation of Zagros and in connection with basement Fault of Korebas, and probably, when sedimentation was in the Zagros basin, they have been exposed in the form of an island. Zagros deformation at the same time, the pressure released from the collision zone on the north side of the East and its wave motion, to the South West, exerts more pressure on the salt horizons and helps them to erupt. About Mangerak salt dome, which is exposed on the side of the Sayakh anticline axis and Basement fault of Korebas, two phenomena are effective in its exposing. Analytical modeling shows the life of the outcrop 31,000 years that this age is consistent with the effects of salt dome Neotectonic.展开更多
The Philippine Arena Project is a large domed roof structure. The arena volume is significant, with 227 m x 179 m ellipse shaped space standing, which is the largest non-column arena in the world. Reinforced concrete ...The Philippine Arena Project is a large domed roof structure. The arena volume is significant, with 227 m x 179 m ellipse shaped space standing, which is the largest non-column arena in the world. Reinforced concrete is used for the bowl structure and main seismic resisting system is considered as dual system. For the structure above Level 04, steel rakers and columns are applied. To identify seismic resisting performance of steel structure, push over analysis had been carried out. Pre-cast concrete plank is planned for arena seating to meet constructing ability. The roof structure is grid type space frame. Tension trusses are located under the space frame for overall stability of roof structure. Wind tunnel test had been conducted to evaluate accurate wind pressure for both structure and cladding design. LRB (lead rubber bearing) is located under the roof structure to reduce seismic force delivered from sub-structure.展开更多
基金financial support from the China Postdoctora Science Foundation(project No.2021M690406)financial supports from the National Natural Science Foundation of China(project No.51708521,51778183)。
文摘Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes.
基金supported by the National Natural Science Foundation of China (No.11404230)Foundation of Science and Technology Bureau of Sichuan Province (No.2013JY0085)
文摘Electronic structures and optical properties of single-layer In1-xGaxN are studied by employing Heyd-Scuseria-Ernzerh(HSE) method based on the first-principles. The band structure and density of states(DOS) of single-layer In1-xGaxN are calculated, and the band gap ranges from 1.8 eV to 3.8 eV as the ratio x changes, illustrating the potential for the tunability of band gap values via Ga doped. We also have investigated optical properties of single-layer In1-xGaxN such as dielectric function, refractive index and absorption coefficient, the main peak of dielectric function spectrum and the absorption edge are found to have a remarkable blue-shift as the concentration of Ga increases. Furthermore, the optical properties of single-layer In1-xGaxN are analyzed based on the band structures and DOS analysis. Such unique optical properties have profound application in nanoelectronics and optical devices.
基金the financial support from the China Postdoctora Science Foundation (project No. 2021M690406)the financial supports from the National Natural Science Foundation of China (project Nos. 51708521, 51778183)
文摘The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.
文摘The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.
基金Sponsored by the National Natural Science Foundation of China(Grant No.90715034)
文摘To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020200the National Basic Research Program of China under Grant Nos 2012CB821402,2011CBA00109 and 2011CBA00101the National Natural Science Foundation of China under Grant No 11204362
文摘High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that supercon- ductivity is mediated by fluctuations associated with the nearby magnetism. Here we report the discovery of a new superconductivity dome without low-energy magnetic fluctuations in LaFeAsO1-xFx with 0.25 ≤ x ≤ 0.75, where the maximal critical temperature Tc at Xopt =0.5-0.55 is even higher than that at x ≤0.2. By nuclear magnetic resonance and transmission electron microscopy, we show that a C4 rotation symmetry-breaking struc- tural transition takes place for x 〉 0.5 above To. Our results point to a new paradigm of high temperature superconductivity.
文摘This article discusses the problems of the dynamic computation for thin-walled structures such as thin plates and thin shells under impact load to find the dynamic factor mainly. In calculation we take into account the effect of the mass of the striking object and the system of thin-walled structures to be struck and transform the distributed mass of thin-walled structures into only one concentrated 'equivalent mass' by the method of reduced mass. Accordingly we derive the dynamic factor for the system of thin-walled structures under impact load.
文摘The paper presents a selected group of tension-strut structural systems designed for the construction of lightweight dome covers of large spans, which can be comparatively easy to assembly and have rises of which can be relatively small. This will allow significant decrease costs of erection and maintenance of objects covered by these roof structures. The proposed systems have been obtained from the results of suitable transformations of a chosen type of double-layer space frame and an appropriate arrangement of tetrahedron modules in the space of each of the newly designed type of the structural system. All these systems are built by means of concentric hoops having their own integral spatial stiffness obtained after an appropriate pre-stressing. Particular hoops can be mounted on the ground level and then one by one will be hoisted to the designed positions where they will be connected by means of special sets of the tension members. Due to these structural features, the assembly process of each system should be relatively simple, fast and not expensive. The whole tension-strut structure has to be connected to the compression perimeter ring and suitably pre-stressed. There are presented visualizations of the proposed systems prepared on the basis of the appropriate numerical models especially defined for each particular structure.
文摘Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.
基金The study was supported by National Natural Foundation of China (No. 41172184)SINOPROBE-08-01the Institute of Geomechanics Foundation (No.DZLXJK200715)
文摘Many equiaxial dome-like structures developed in the north segment of the Xuefengshan orocline, Central China are obviously inconcordant with the NE-trending linear structures in this area, which contain important records for understanding the structural framework and evolution of this belt. In this paper, taking one of the typical dome-like structures in the Xuefengshan orcline (e.g. Moping dome-like structure) as an example, based on its structural framework interpratatoin, superposed deformation analysis and paleo-stress fields reconstruction, we propose the Moping dome- like structure is composed of two populations of different-striking thrust-fold structures, -E-trending and NE-striking structures, indicative of two-stages shortening, -N- and NW-striking, respectively. Together with the geochronological analysis, we suggest the first stage of shortening occurred in Late Triassic to Early Jurassic, due to the Indosinian intercollisional orogeny of the Yangtze Block and the North China Block. The second occurred during Late Jurassic-Early Cretaceous owing to Yanshanian intracontinental orogeny, leading to the intensive superposition of the NE-trending structures onto the -E-trending structures, and the final ocurrence of the Moping dome. Thus, our study indicates the Xuefengshan arc-shape belt also experienced two-phase deformation, and resulted from the superposition of NE-SW structures onto -E-W structures in Late Jurassic-Early Cretaceous, which could provide new structural evidence for probing the Mesozoic tectonic framework and evolution of the Xuefengshan orocline.
文摘The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.
基金Project(2010-0008-277) supported by NCRC (National Core Research Center) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technologysupported for two years by Pusan National University Research Grant
文摘The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was optimized based on the requirement of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for type lI CNG storage vessels, was proposed by a process of review and analysis of various existing shapes, and the minimum thickness was established in this sequence: metal liners, composite materials and dome parts. Therefore, the new proposed shape products give a mass reduction of 4.8 kg(5.1%)
文摘Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone in the overlapping parts of Koreh Bas right fault zone. The origin of this diapir is evaporative series of Hormuz, at the beginning of the Cambrian and ending Precambrian age. In this paper, we investigated tectonic structures around the salt dome of Mangerak. By promoting this salt dome, a variety of structures, such as marginal reverse faults, radial normal faults, folds and caves have been developed. In addition, many changes can be seen in the status line, and the amount and direction of the strata dip, thickness of rock units, and facies change, that all showed the downbuilding phenomenon in the diapir. The method was based on structural desert surveys and relevant measurements. The results show that salt domes above were rising during the Late Cretaceous-Paleocene, and pre-deformation of Zagros and in connection with basement Fault of Korebas, and probably, when sedimentation was in the Zagros basin, they have been exposed in the form of an island. Zagros deformation at the same time, the pressure released from the collision zone on the north side of the East and its wave motion, to the South West, exerts more pressure on the salt horizons and helps them to erupt. About Mangerak salt dome, which is exposed on the side of the Sayakh anticline axis and Basement fault of Korebas, two phenomena are effective in its exposing. Analytical modeling shows the life of the outcrop 31,000 years that this age is consistent with the effects of salt dome Neotectonic.
文摘The Philippine Arena Project is a large domed roof structure. The arena volume is significant, with 227 m x 179 m ellipse shaped space standing, which is the largest non-column arena in the world. Reinforced concrete is used for the bowl structure and main seismic resisting system is considered as dual system. For the structure above Level 04, steel rakers and columns are applied. To identify seismic resisting performance of steel structure, push over analysis had been carried out. Pre-cast concrete plank is planned for arena seating to meet constructing ability. The roof structure is grid type space frame. Tension trusses are located under the space frame for overall stability of roof structure. Wind tunnel test had been conducted to evaluate accurate wind pressure for both structure and cladding design. LRB (lead rubber bearing) is located under the roof structure to reduce seismic force delivered from sub-structure.