A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizi...In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizing the Fourier splitting method, under suitable assumptions on the initial data, for any multi-index α, we show that the solution Ψ satisfies .展开更多
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the...In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.展开更多
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri...Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.展开更多
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to...Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer lat...The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.展开更多
Single-layer superconductors are ideal materials for fabricating superconducting nano devices.However,up to date,very few single-layer elemental superconductors have been predicted and especially no one has been succe...Single-layer superconductors are ideal materials for fabricating superconducting nano devices.However,up to date,very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet.Here,using crystal structure search techniques and ab initio calculations,we predict that a single-layer planar carbon sheet with 4-and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature(Tc)up to around 20.8 K.More importantly,we propose a synthesis route to obtain such a single-layer T-graphene,that is,a T-graphene potassium intercalation compound(C4 K with P4/mmm symmetry)is firstly synthesized at high pressure(>11.5 GPa)and then quenched to ambient condition;and finally,the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C4 K,or peeled off from bulk T-graphite C4,where C4 can be obtained from C4 K by evaporating the K atoms.Interestingly,we find that the calculated Tc of C4 K is about 30.4 K at 0 GPa,which sets a new record for layered carbon-based superconductors.The present findings add a new class of carbon-based superconductors.In particular,once the single-layer T-graphene is synthesized,it can pave the way for fabricating superconducting devices together with other 2 D materials using the layer-by-layer growth techniques.展开更多
The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of singl...The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.展开更多
Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmissio...Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.展开更多
We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton ...We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability.展开更多
To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failur...To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.展开更多
The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically deriv...The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.展开更多
In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex str...In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.展开更多
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysuppo...Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.展开更多
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
文摘In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizing the Fourier splitting method, under suitable assumptions on the initial data, for any multi-index α, we show that the solution Ψ satisfies .
基金supported by National Natural Science Foundation of China Innovation Group (Grant No.12221002)Beijing Natural Science Foundation (Grant No.L212018)。
文摘In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
文摘Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.
基金the National Natural Science Foundation of China(No.52271316)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030262).
文摘Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
文摘The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300404the National Basic Research Program of China under Grant No 2015CB921202+2 种基金the National Nature Science Foundation of China under Grant Nos 11574133 and 11834006the Nature Science Foundation of Jiangsu Province under Grant No BK20150012the Fundamental Research Funds for the Central Universities,the Science Challenge Project(No TZ2016001)
文摘Single-layer superconductors are ideal materials for fabricating superconducting nano devices.However,up to date,very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet.Here,using crystal structure search techniques and ab initio calculations,we predict that a single-layer planar carbon sheet with 4-and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature(Tc)up to around 20.8 K.More importantly,we propose a synthesis route to obtain such a single-layer T-graphene,that is,a T-graphene potassium intercalation compound(C4 K with P4/mmm symmetry)is firstly synthesized at high pressure(>11.5 GPa)and then quenched to ambient condition;and finally,the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C4 K,or peeled off from bulk T-graphite C4,where C4 can be obtained from C4 K by evaporating the K atoms.Interestingly,we find that the calculated Tc of C4 K is about 30.4 K at 0 GPa,which sets a new record for layered carbon-based superconductors.The present findings add a new class of carbon-based superconductors.In particular,once the single-layer T-graphene is synthesized,it can pave the way for fabricating superconducting devices together with other 2 D materials using the layer-by-layer growth techniques.
基金National Natural Science Foundation of China,Grant No.59895410
文摘The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.
文摘We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability.
基金Sponsored by the National Natural Science Foundation of China(Grant No.90715034)
文摘To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60776067 and 10974011)
文摘The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.
文摘Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.