In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plast...In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.展开更多
The data-driven phenomenological models based on deformation measurements have been widely utilized to predict the slope failure time(SFT).The observational and model uncertainties could lead the predicted SFT calcula...The data-driven phenomenological models based on deformation measurements have been widely utilized to predict the slope failure time(SFT).The observational and model uncertainties could lead the predicted SFT calculated from the phenomenological models to deviate from the actual SFT.Currently,very limited study has been conducted on how to evaluate the effect of such uncertainties on SFT prediction.In this paper,a comprehensive slope failure database was compiled.A Bayesian machine learning(BML)-based method was developed to learn the model and observational uncertainties involved in SFT prediction,through which the probabilistic distribution of the SFT can be obtained.This method was illustrated in detail with an example.Verification studies show that the BML-based method is superior to the traditional inverse velocity method(INVM)and the maximum likelihood method for predicting SFT.The proposed method in this study provides an effective tool for SFT prediction.展开更多
BACKGROUND Microvascular tissue reconstruction is a well-established,commonly used technique for a wide variety of the tissue defects.However,flap failure is associated with an additional hospital stay,medical cost bu...BACKGROUND Microvascular tissue reconstruction is a well-established,commonly used technique for a wide variety of the tissue defects.However,flap failure is associated with an additional hospital stay,medical cost burden,and mental stress.Therefore,understanding of the risk factors associated with this event is of utmost importance.AIM To develop machine learning-based predictive models for flap failure to identify the potential factors and screen out high-risk patients.METHODS Using the data set of 946 consecutive patients,who underwent microvascular tissue reconstruction of free flap reconstruction for head and neck,breast,back,and extremity,we established three machine learning models including random forest classifier,support vector machine,and gradient boosting.Model performances were evaluated by the indicators such as area under the curve of receiver operating characteristic curve,accuracy,precision,recall,and F1 score.A multivariable regression analysis was performed for the most critical variables in the random forest model.RESULTS Post-surgery,the flap failure event occurred in 34 patients(3.6%).The machine learning models based on various preoperative and intraoperative variables were successfully developed.Among them,the random forest classifier reached the best performance in receiver operating characteristic curve,with an area under the curve score of 0.770 in the test set.The top 10 variables in the random forest were age,body mass index,ischemia time,smoking,diabetes,experience,prior chemotherapy,hypertension,insulin,and obesity.Interestingly,only age,body mass index, and ischemic time were statistically associated with the outcomes.CONCLUSIONMachine learning-based algorithms, especially the random forest classifier, were very important incategorizing patients at high risk of flap failure. The occurrence of flap failure was a multifactordrivenevent and was identified with numerous factors that warrant further investigation.Importantly, the successful application of machine learning models may help the clinician indecision-making, understanding the underlying pathologic mechanisms of the disease, andimproving the long-term outcome of patients.展开更多
Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling a...Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling,random oversampling,or Synthetic Minority Oversampling Technique(SMOTE)algorithms.This paper compared the classification performance of three popular classifiers(Logistic Regression,Gaussian Naïve Bayes,and Support Vector Machine)in predicting machine failure in the Oil and Gas industry.The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945(97%)‘non-failure’and 528(3%)‘failure data’.The three independent variables to predict machine failure were pressure indicator,flow indicator,and level indicator.The accuracy of the classifiers is very high and close to 100%,but the sensitivity of all classifiers using the original dataset was close to zero.The performance of the three classifiers was then evaluated for data with different imbalance rates(10%to 50%)generated from the original data using SMOTE,SMOTE-Support Vector Machine(SMOTE-SVM)and SMOTE-Edited Nearest Neighbour(SMOTE-ENN).The classifiers were evaluated based on improvement in sensitivity and F-measure.Results showed that the sensitivity of all classifiers increases as the imbalance rate increases.SVM with radial basis function(RBF)kernel has the highest sensitivity when data is balanced(50:50)using SMOTE(Sensitivitytest=0.5686,Ftest=0.6927)compared to Naïve Bayes(Sensitivitytest=0.4033,Ftest=0.6218)and Logistic Regression(Sensitivitytest=0.4194,Ftest=0.621).Overall,the Gaussian Naïve Bayes model consistently improves sensitivity and F-measure as the imbalance ratio increases,but the sensitivity is below 50%.The classifiers performed better when data was balanced using SMOTE-SVM compared to SMOTE and SMOTE-ENN.展开更多
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c...This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively.展开更多
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni...Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy.展开更多
This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of lim...This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design.展开更多
This paper focuses on pragmatic failures in cross-cultural communication and explores the difficult meanings in cross-cultural pragmatics. Through exploring the differences in address, greeting, politeness and other c...This paper focuses on pragmatic failures in cross-cultural communication and explores the difficult meanings in cross-cultural pragmatics. Through exploring the differences in address, greeting, politeness and other cross-cultural aspects, the author explains the cross-cultural basis for pragmatics. The author first explains certain concepts, including culture, pragmatics, pragmatic failures and cross-cultural communication, and then illustrates some pragmatic failures in cross-cultural communication and discusses the causes of these failures. Finally, she gives some suggestions on improving competence in cross-cultural communication. This thesis is intended to remind English learners of the importance of learning cultures of English-speaking countries and facilitate cross-cultural communication.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depress...BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depression in patients with HF.METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018.Through univariate analysis and the use of an artificial neural network algorithm,predictors significantly linked to depression were identified.These predictors were utilized to create a stacking model employing tree-based learners.The performances of both the individual models and the stacking model were assessed by using the test dataset.Furthermore,the SHapley additive exPlanations(SHAP)model was applied to interpret the stacking model.RESULTS The models included five predictors.Among these models,the stacking model demonstrated the highest performance,achieving an area under the curve of 0.77(95%CI:0.71-0.84),a sensitivity of 0.71,and a specificity of 0.68.The calibration curve supported the reliability of the models,and decision curve analysis confirmed their clinical value.The SHAP plot demonstrated that age had the most significant impact on the stacking model's output.CONCLUSION The stacking model demonstrated strong predictive performance.Clinicians can utilize this model to identify highrisk depression patients with HF,thus enabling early provision of psychological interventions.展开更多
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
文摘In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.
基金substantially supported by the Shuguang Program from Shanghai Education Development FoundationShanghai Municipal Education Commission, China (Grant No. 19SG19)+1 种基金National Natural Science Foundation of China (Grant No. 42072302)Fundamental Research Funds for the Central Universities, China
文摘The data-driven phenomenological models based on deformation measurements have been widely utilized to predict the slope failure time(SFT).The observational and model uncertainties could lead the predicted SFT calculated from the phenomenological models to deviate from the actual SFT.Currently,very limited study has been conducted on how to evaluate the effect of such uncertainties on SFT prediction.In this paper,a comprehensive slope failure database was compiled.A Bayesian machine learning(BML)-based method was developed to learn the model and observational uncertainties involved in SFT prediction,through which the probabilistic distribution of the SFT can be obtained.This method was illustrated in detail with an example.Verification studies show that the BML-based method is superior to the traditional inverse velocity method(INVM)and the maximum likelihood method for predicting SFT.The proposed method in this study provides an effective tool for SFT prediction.
文摘BACKGROUND Microvascular tissue reconstruction is a well-established,commonly used technique for a wide variety of the tissue defects.However,flap failure is associated with an additional hospital stay,medical cost burden,and mental stress.Therefore,understanding of the risk factors associated with this event is of utmost importance.AIM To develop machine learning-based predictive models for flap failure to identify the potential factors and screen out high-risk patients.METHODS Using the data set of 946 consecutive patients,who underwent microvascular tissue reconstruction of free flap reconstruction for head and neck,breast,back,and extremity,we established three machine learning models including random forest classifier,support vector machine,and gradient boosting.Model performances were evaluated by the indicators such as area under the curve of receiver operating characteristic curve,accuracy,precision,recall,and F1 score.A multivariable regression analysis was performed for the most critical variables in the random forest model.RESULTS Post-surgery,the flap failure event occurred in 34 patients(3.6%).The machine learning models based on various preoperative and intraoperative variables were successfully developed.Among them,the random forest classifier reached the best performance in receiver operating characteristic curve,with an area under the curve score of 0.770 in the test set.The top 10 variables in the random forest were age,body mass index,ischemia time,smoking,diabetes,experience,prior chemotherapy,hypertension,insulin,and obesity.Interestingly,only age,body mass index, and ischemic time were statistically associated with the outcomes.CONCLUSIONMachine learning-based algorithms, especially the random forest classifier, were very important incategorizing patients at high risk of flap failure. The occurrence of flap failure was a multifactordrivenevent and was identified with numerous factors that warrant further investigation.Importantly, the successful application of machine learning models may help the clinician indecision-making, understanding the underlying pathologic mechanisms of the disease, andimproving the long-term outcome of patients.
基金supported under the research Grant(PO Number:920138936)from the Institute of Technology PETRONAS Sdn Bhd,32610,Bandar Seri Iskandar,Perak,Malaysia.
文摘Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling,random oversampling,or Synthetic Minority Oversampling Technique(SMOTE)algorithms.This paper compared the classification performance of three popular classifiers(Logistic Regression,Gaussian Naïve Bayes,and Support Vector Machine)in predicting machine failure in the Oil and Gas industry.The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945(97%)‘non-failure’and 528(3%)‘failure data’.The three independent variables to predict machine failure were pressure indicator,flow indicator,and level indicator.The accuracy of the classifiers is very high and close to 100%,but the sensitivity of all classifiers using the original dataset was close to zero.The performance of the three classifiers was then evaluated for data with different imbalance rates(10%to 50%)generated from the original data using SMOTE,SMOTE-Support Vector Machine(SMOTE-SVM)and SMOTE-Edited Nearest Neighbour(SMOTE-ENN).The classifiers were evaluated based on improvement in sensitivity and F-measure.Results showed that the sensitivity of all classifiers increases as the imbalance rate increases.SVM with radial basis function(RBF)kernel has the highest sensitivity when data is balanced(50:50)using SMOTE(Sensitivitytest=0.5686,Ftest=0.6927)compared to Naïve Bayes(Sensitivitytest=0.4033,Ftest=0.6218)and Logistic Regression(Sensitivitytest=0.4194,Ftest=0.621).Overall,the Gaussian Naïve Bayes model consistently improves sensitivity and F-measure as the imbalance ratio increases,but the sensitivity is below 50%.The classifiers performed better when data was balanced using SMOTE-SVM compared to SMOTE and SMOTE-ENN.
基金the National Research Foundation of Korea(NRF)grant of the Korea government(MSIP)(2020R1A2B5B01001899)(Grantee:GJY,http://www.nrf.re.kr)and Institute of Engineering Research at Seoul National University(Grantee:GJY,http://www.snu.ac.kr).The authors are grateful for their supports.
文摘This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively.
基金Taif University Researchers Supporting Project Number(TURSP-2020/73)Taif University,Taif,Saudi Arabia.
文摘Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy.
基金Projects supported by the China Scholarship Council
文摘This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design.
文摘This paper focuses on pragmatic failures in cross-cultural communication and explores the difficult meanings in cross-cultural pragmatics. Through exploring the differences in address, greeting, politeness and other cross-cultural aspects, the author explains the cross-cultural basis for pragmatics. The author first explains certain concepts, including culture, pragmatics, pragmatic failures and cross-cultural communication, and then illustrates some pragmatic failures in cross-cultural communication and discusses the causes of these failures. Finally, she gives some suggestions on improving competence in cross-cultural communication. This thesis is intended to remind English learners of the importance of learning cultures of English-speaking countries and facilitate cross-cultural communication.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
文摘BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depression in patients with HF.METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018.Through univariate analysis and the use of an artificial neural network algorithm,predictors significantly linked to depression were identified.These predictors were utilized to create a stacking model employing tree-based learners.The performances of both the individual models and the stacking model were assessed by using the test dataset.Furthermore,the SHapley additive exPlanations(SHAP)model was applied to interpret the stacking model.RESULTS The models included five predictors.Among these models,the stacking model demonstrated the highest performance,achieving an area under the curve of 0.77(95%CI:0.71-0.84),a sensitivity of 0.71,and a specificity of 0.68.The calibration curve supported the reliability of the models,and decision curve analysis confirmed their clinical value.The SHAP plot demonstrated that age had the most significant impact on the stacking model's output.CONCLUSION The stacking model demonstrated strong predictive performance.Clinicians can utilize this model to identify highrisk depression patients with HF,thus enabling early provision of psychological interventions.
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.