Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-lumines...Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-luminescence(PL)quantum yield of monolayer(1L)TMDs is still quite low at room temperature,which severely lim-its their practical applications.Here we report a PL enhancement effect of 1L WS_(2) at room temperature when con-structing it into 1L-WS_(2)/hBN/1L-MoS_(2) vertical HSs.The PL enhancement factors(EFs)can be up to 4.2.By using transient absorption(TA)spectroscopy,we demonstrate that the PL enhancement effect is due to energy transfer from 1L MoS_(2) to 1L WS_(2).The energy transfer process occurs on a picosecond timescale and lasts more than one hundred picoseconds which indicates a prominent contribution from exciton-exciton annihilation.Furthermore,the PL en-hancement effect of 1L WS_(2) can be observed in 2L-MoS_(2)/hBN/1L-WS_(2) and 3L-MoS_(2)/hBN/1L-WS_(2) HSs.Our study provides a comprehensive understanding of the energy transfer process in the PL enhancement of 2D TMDs and a fea-sible way to optimize the performance of TMD-based optoelectronic devices.展开更多
Circularly polarized luminescence(CPL)materials have received widespread attention due to their remarkable performance and broad applications.However,current CPL material research primarily focuses on tunable color,in...Circularly polarized luminescence(CPL)materials have received widespread attention due to their remarkable performance and broad applications.However,current CPL material research primarily focuses on tunable color,intensity,and reversibility.Constructing CPL with adjustable lifetime remains a significant challenge.Herein,a series of CPL polymeric materials with tunable lifetime were obtained by employing phosphorescent terephthalic acid and chiral organic small molecule R/S-BNAF(a luminescent binaphthol derivative)to copolymerize with acrylamide in different ratios.It was verified that this performance results from the different energy transfer efficiency between luminophores with varying ratios of the monomers for copolymerization.This strategy to realize CPL with tunable lifetime by modulating the energy transfer efficiency will provide a new perspective to broaden the applications of CPL materials.展开更多
Ultralong organic room-temperature phosphorescence(RTP)materials have attracted tremendous attention recently due to their diverse applications.Several ultralong organic RTP materials mimicking the host-guest architec...Ultralong organic room-temperature phosphorescence(RTP)materials have attracted tremendous attention recently due to their diverse applications.Several ultralong organic RTP materials mimicking the host-guest architecture of inorganic systems have been exploited successfully.However,complicated synthesis and high expenditure are still inevitable in these studies.Herein,we develop a series of novel host-guest organic phosphorescence systems,in which all luminophores are electron-rich,commercially available and halogen-atom-free.The maximum phosphorescence efficiency and the longest lifetime could reach 23.6%and 362 ms,respectively.Experimental results and theoretical calculation indicate that the host molecules not only play a vital role in providing a rigid environment to suppress non-radiative decay of the guest,but also show a synergistic effect to the guest through Förster resonance energy transfer(FRET).The commercial availability,facile preparation and unique properties also make these new host-guest materials an excellent candidate for the anti-counterfeiting application.This work will inspire researchers to develop new RTP systems with different wavelengths from commercially available luminophores.展开更多
Compared with fluorescent materials,metal-free organic environmental afterglow materials,with larger Stokes shifts,longer lifetimes,higher S/N ratios,and sensitivities,present potential in new applications.However,ach...Compared with fluorescent materials,metal-free organic environmental afterglow materials,with larger Stokes shifts,longer lifetimes,higher S/N ratios,and sensitivities,present potential in new applications.However,achieving air stability and long lifetime organic afterglow systems with tunable emission color still remains a challenge.Herein,we have designed and synthesized luminescent copolymers exhibiting afterglow emission with tunability including white-light afterglow with considerable quantum yield[Commission Internationale de l’Eclairage(CIE)coordinates(0.32,0.33),ΦP=11%]in the amorphous state through the rarely reported triplet-to-singlet Förster resonance energy transfer(TS-FET).Also,they can emit different colors under UV light,including white-light[CIE coordinates(0.31,0.33),ΦPl=27%].This strategy was achieved by copolymerizing two simple-structured single-benzene-based compounds with acrylamide(AM)in different ratios.In addition,these materials can also be employed as a safety ink for paper paving the way for long lifetime luminescent material applications.展开更多
Flexible molecular crystal waveguides based on elastic molecular crystals(EMCs)are essential inflexible and compact optical materials.An increased loss coeffi-cientαdue to self-absorption is often a problem in optical ...Flexible molecular crystal waveguides based on elastic molecular crystals(EMCs)are essential inflexible and compact optical materials.An increased loss coeffi-cientαdue to self-absorption is often a problem in optical waveguides(OWGs)offluorescent chemical materials waveguiding photons in active mode.Herein,the development of anthracene-based elastic mixed molecular crystals(EMMCs)is reported for Förster Resonance Energy Transfer(FRET)-assisted OWG.To yield a FRET crystal system based on elastic molecular crystals,1%–5%accep-tor doping forfluorescent molecular crystals of 9,10-dibromoanthracene 1 was successful by selecting the same regioisomer having electron-withdrawing group,9,10-diformylanthracene 2,as a dopant.In addition to conversion to the mixed system,there is a difference in the elastic modulus and hardness in EMC C1 and EMMC C2@1.However,the elastic behaviour was also shown in a few percent doping of the acceptor.Theαvalue of this EMMC,composed of 1 including 1%of 2(0.0077 dB/μm),is much lower than that of EMC composed of 1(0.1258 dB/μm)because of reducing self-absorption in the FRET system.An efficient andflexible OWG was successfully developed by selecting an appropriate acceptor molecule and its low doping rate for mixed crystal construction.This method is a practical approach in various functional andflexible crystal systems.展开更多
The assembly of Förster resonance energy transfer(FRET)donor and acceptor for amplified fluorescence sensing has been considered a big challenge.Herein,by using the multivariate approach,we report the design and ...The assembly of Förster resonance energy transfer(FRET)donor and acceptor for amplified fluorescence sensing has been considered a big challenge.Herein,by using the multivariate approach,we report the design and synthesis of a series of FRET-based metal–organic frameworks(MOFs)with variable donor fluorophore-to-the-acceptor ratios.展开更多
Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging...Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging treatment modality,and the key for achieving high-efficiency PDT is to select light with strong tissue penetration depth and enhance the generation of reactive oxygen species(ROS).Although the upconversion nanoparticles(UCNPs)modified with the photosensitizers could achieve PDT with strong penetration depth under near-infrared light irradiation,the ROS generated by traditional single-pathway PDT is still insufficient.Herein,we developed a novel nanoconjugate(UCNP-Ce6/AIEgen)for dual-pathway reinforced PDT,in which the UCNPs were co-modified with chlorin e6(Ce6)and luminogen with aggregation-induced emission(AIEgen).Due to the presence of AIEgen,UCNP-Ce6/AIEgen could avoid aggregation-caused luminescence quenching in biological water environments and convert upconversion luminescence(UCL)of UCNPs to Ce6-activatable fluorescence.Therefore,under the irradiation of 808 nm laser,UCNP-Ce6/AIEgen can not only undergo direct lanthanide-triplet energy transfer to activate Ce6,but also convert the UCL of UCNPs to the light that can activate Ce6 through Fӧrster resonance energy transfer to generate more ROS,thus promoting tumor cell apoptosis.This work broadens the applications of nanoconjugates of lanthanide-based inorganic materials and organic dyes,and provides a conception for reinforced PDT of tumors.展开更多
Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-...Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-labelled peptide was quenched by CNPs.The sensor reacted with trypsin to cleave the peptide,resulting in the release of the dye moiety and a substantial increase in fluorescence intensity,which was dose-and time-dependent,and trypsin could be quantified accordingly.Correspondingly,the biosensor has led to the development of a convenient and efficient fluorescent method to measure trypsin activity,with a detection limit of 0.7 mg/mL.The method allows rapid determination of trypsin activity in the normal and acute pancreatitis range,suitable for point-of-care testing.Furthermore,the applicability of the method has been demonstrated by detecting trypsin in spiked urine samples.展开更多
Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application...Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence.Because fluorescence lifetime is sensitive to microenvironments and molecule alterations,FLIM is promising for the detection of pathological conditions.Current cancer-related FLIM applications can be divided into three main categories:(i)FLIM with autofluorescence molecules in or out of a cell,especially with reduced form of nicotinamide adenine dinucleotide,and flavin adenine dinucleotide for cellular metabolism research;(ii)FLIM with Förster resonance energy transfer for monitoring protein interactions;and(iii)FLIM with fluorophore-dyed probes for specific aberration detection.Advancements in nanomaterial production and efficient calculation systems,as well as novel cancer biomarker discoveries,have promoted FLIM optimization,offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring.This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development.We also highlight current challenges and provide perspectives for further investigation.展开更多
Structured illumination-based super-resolution Förster resonance energy transfer microscopy(SIM-FRET)provides an approach to resolving molecular behavior localized in intricate biological structures in living cel...Structured illumination-based super-resolution Förster resonance energy transfer microscopy(SIM-FRET)provides an approach to resolving molecular behavior localized in intricate biological structures in living cells.However,SIM reconstruction artifacts will decrease the quantitative analysis fidelity of SIMFRET signals.To address these issues,we have developed a method called HiFi spectrum optimization SIM-FRET(HiFi-SO-SIM-FRET),which uses optimized Wiener parameters in the two-step spectrum optimization to suppress sidelobe artifacts and achieve super-resolution quantitative SIM-FRET.We validated our method by demonstrating its ability to reduce reconstruction artifacts while maintaining the accuracy of FRET signals in both simulated FRET models and live-cell FRET-standard construct samples.In summary,HiFi-SO-SIM-FRET provides a promising solution for achieving high spatial resolution and reducing SIM reconstruction artifacts in quantitative FRET imaging.展开更多
Biomolecular systems,such as proteins,crucially rely on dynamic processes at the nanoscale.Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular dr...Biomolecular systems,such as proteins,crucially rely on dynamic processes at the nanoscale.Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that controlbiomolecular systems.Single-molecule fluorescence resonance energy transfer(smFRET)is a powerful technique to observe inreal-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states.Currently,this technique is fundamentally limited by irreversible photobleaching,causing the untimely end of the experiment andthus,a narrow temporal bandwidth of≤3 orders of magnitude.Here,we introduce“DyeCycling”,a measurement scheme withwhich we aim to break the photobleaching limit in smFRET.We introduce the concept of spontaneous dye replacement bysimulations,and as an experimental proof-of-concept,we demonstrate the intermittent observation of a single biomolecule forone hour with a time resolution of milliseconds.Theoretically,DyeCycling can provide>100-fold more information per singlemolecule than conventional smFRET.We discuss the experimental implementation of DyeCycling,its current and fundamentallimitations,and specific biological use cases.Given its general simplicity and versatility,DyeCycling has the potential torevolutionize the field of time-resolved smFRET,where it may serve to unravel a wealth of biomolecular dynamics by bridgingfrom milliseconds to the hour range.展开更多
Key challenges in the development of organic light-emitting transistors(OLETs)are blocking both scientific research and practical applications of these devices,e.g.,the absence of high-mobility emissive organic semico...Key challenges in the development of organic light-emitting transistors(OLETs)are blocking both scientific research and practical applications of these devices,e.g.,the absence of high-mobility emissive organic semiconductor materials,low device efficiency,and color tunability.Here,we report a novel device configuration called the energy transfer organic light-emitting transistor(ET-OLET)that is intended to overcome these challenges.An organic fluorescent dye-doped polymethyl methacrylate(PMMA)layer is inserted below the conventional high-mobility organic semiconductor layer in a single-component OLET to separate the functions of the charge transport and light-emitting layers,thus making the challenge to essentially integrate the high mobility and emissive functions within a single organic semiconductor in a conventional OLET or multilayer OLET unnecessary.In this architecture,there is little change in mobility,but the external quantum efficiency(EQE)of the ET-OLET is more than six times that of the conventional OLET because of the efficient Förster resonance energy transfer,which avoids exciton-charge annihilation.In addition,the emission color can be tuned from blue to white to green-yellow using the sourcedrain and gate voltages.The proposed structure is promising for use with electrically pumped organic lasers.展开更多
Elongation factor 4(EF4) is one of the highly conserved translational GTPases, whose functions are largely unknown. Structures of EF4 bound ribosomal PRE-translocation and POST-translocation complexes have both been...Elongation factor 4(EF4) is one of the highly conserved translational GTPases, whose functions are largely unknown. Structures of EF4 bound ribosomal PRE-translocation and POST-translocation complexes have both been visualized. On top of cellular, structural, and biochemical studies, several controversial models have been raised to rationalize functions of EF4. However, how EF4 modulates elongation through its interactions with ribosomes has not been revealed. Here, using single-molecule fluorescence resonance energy transfer assays, we directly captured short-lived EF4·GTP bound ribosomal PRE and POST translocation complexes, which may adopt slightly different conformations from structures prepared using GDP, GDPNP, or GDPCP. Furthermore, we revealed that EF4·GTP severely impairs delivery of aminoacyl-tRNA into the A-site of the ribosome and moderately accelerates translocation. We proposed that functions of EF4 are to slow overall elongation and to stall majority of ribosomes in POST states under stress conditions.展开更多
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the ...Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.展开更多
N6-methyladenosine(m^(6)A)plays an important role in embryogenesis,nuclear export,transcription splicing,and protein translation control.Herein,we demonstrate a copper-free click chemistry-mediated assembly of single ...N6-methyladenosine(m^(6)A)plays an important role in embryogenesis,nuclear export,transcription splicing,and protein translation control.Herein,we demonstrate a copper-free click chemistry-mediated assembly of single quantum dot(QD)nanosensor for accurately monitoring locus-specific m^(6)A in cancer cells.The m^(6)A-sensitive endoribonuclease MazF can digest the unmethylated A-RNA,and the intact m^(6)A-RNA then hybridizes with DNA probes a and b to produce a sandwich hybrid,initiating the click chemistry to generate probe a–b ligation product via first tandem ligation detection reaction(LDR)cycle.Subsequently,DNA probes c and d can hybridize with the probe a–b ligation product to generate the probe c–d ligation product via second LDR cycle.Both LDR cycles can be repeated through denaturation and annealing reaction to generate abundant biotin-/fluorophore-modified probe c–d ligation products that can easily assemble on the QD surface to induce distinct fluorescence resonance energy transfer(FRET)between QD and Cy5.This assay can be homogenously performed without the involvement of copper catalyst,m^(6)A-specific antibody,radioactive labeling,ligase enzyme,enzymatic reverse transcription,and next-generation sequencing.Moreover,it can discriminate even 0.01% m^(6)A level in complex samples and accurately measure cellular m^(6)A-RNA expression,providing a promising avenue for clinical diagnostics and biomedical research.展开更多
The accurate detection of blood glucose is of critical importance in the diagnosis and management of diabetes and its complications. Herein, we report a novel strategy based on an upconversion nanoparticles-polydopami...The accurate detection of blood glucose is of critical importance in the diagnosis and management of diabetes and its complications. Herein, we report a novel strategy based on an upconversion nanoparticles-polydopamine (UCNPs-PDA) nanosystem for the accurate detection of glucose in human serum and whole blood through a simple blending of test samples with ligand-free UCNPs, dopamine, and glucose oxidase (GOx). Owing to the high affinity of lanthanide ions exposed on the surface of ligand-free UCNPs, dopamine monomers could spontaneously attach to the UCNPs and further polymerize to form a PDA shell resulting in a remarkable upconversion luminescence (UCL) quenching (97.4%) of UCNPs under 980-nm excitation. Such UCL quenching can be effectively inhibited by H2O2 produced from the GOx/glucose enzymatic reaction, thus enabling the detection of H2O2 or glucose based on the UCL quenching/inhibition bioassay. Owing to the highly sensitive UCL response and background-free interference of the UCNPs-PDA nanosystem, we achieved a sensitive, selective, and high-throughput bioassay for glucose in human serum and whole blood, thereby revealing the great potential of the UCNPs-PDA nanosystem for the accurate detection of blood glucose or other HRO2-generated biomolecules in clinical bioassays.展开更多
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-luminescence(PL)quantum yield of monolayer(1L)TMDs is still quite low at room temperature,which severely lim-its their practical applications.Here we report a PL enhancement effect of 1L WS_(2) at room temperature when con-structing it into 1L-WS_(2)/hBN/1L-MoS_(2) vertical HSs.The PL enhancement factors(EFs)can be up to 4.2.By using transient absorption(TA)spectroscopy,we demonstrate that the PL enhancement effect is due to energy transfer from 1L MoS_(2) to 1L WS_(2).The energy transfer process occurs on a picosecond timescale and lasts more than one hundred picoseconds which indicates a prominent contribution from exciton-exciton annihilation.Furthermore,the PL en-hancement effect of 1L WS_(2) can be observed in 2L-MoS_(2)/hBN/1L-WS_(2) and 3L-MoS_(2)/hBN/1L-WS_(2) HSs.Our study provides a comprehensive understanding of the energy transfer process in the PL enhancement of 2D TMDs and a fea-sible way to optimize the performance of TMD-based optoelectronic devices.
基金supported by the National Key Research and Development Program of China(2022YFB3203500)the National Natural Science Foundation of China(22125803,22020102006)+2 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX03)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities。
文摘Circularly polarized luminescence(CPL)materials have received widespread attention due to their remarkable performance and broad applications.However,current CPL material research primarily focuses on tunable color,intensity,and reversibility.Constructing CPL with adjustable lifetime remains a significant challenge.Herein,a series of CPL polymeric materials with tunable lifetime were obtained by employing phosphorescent terephthalic acid and chiral organic small molecule R/S-BNAF(a luminescent binaphthol derivative)to copolymerize with acrylamide in different ratios.It was verified that this performance results from the different energy transfer efficiency between luminophores with varying ratios of the monomers for copolymerization.This strategy to realize CPL with tunable lifetime by modulating the energy transfer efficiency will provide a new perspective to broaden the applications of CPL materials.
基金This work was supported by the National Natural Science Foundation of China(21788102 and 21525417)the Natural Science Foundation of Guangdong Province(2019B030301003 and 2016A030312002)the Innovation and Technology Commission of Hong Kong(ITC-CNERC14S01).
文摘Ultralong organic room-temperature phosphorescence(RTP)materials have attracted tremendous attention recently due to their diverse applications.Several ultralong organic RTP materials mimicking the host-guest architecture of inorganic systems have been exploited successfully.However,complicated synthesis and high expenditure are still inevitable in these studies.Herein,we develop a series of novel host-guest organic phosphorescence systems,in which all luminophores are electron-rich,commercially available and halogen-atom-free.The maximum phosphorescence efficiency and the longest lifetime could reach 23.6%and 362 ms,respectively.Experimental results and theoretical calculation indicate that the host molecules not only play a vital role in providing a rigid environment to suppress non-radiative decay of the guest,but also show a synergistic effect to the guest through Förster resonance energy transfer(FRET).The commercial availability,facile preparation and unique properties also make these new host-guest materials an excellent candidate for the anti-counterfeiting application.This work will inspire researchers to develop new RTP systems with different wavelengths from commercially available luminophores.
基金The National Natural Science Foundation of China(nos.21788102,22020102006,21722603,and 21871083)project support by the Shanghai Municipal Science and Technology Major Project(grant no.2018SHZDZX03)+3 种基金Program of Shanghai Academic/Technology Research Leader(no.20XD1421300)“Shu Guang”project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(no.19SG26)the Innovation Program of Shanghai Municipal Education Commission(no.201701-07-00-02-E00010)the Fundamental Research Funds for the Central Universities.
文摘Compared with fluorescent materials,metal-free organic environmental afterglow materials,with larger Stokes shifts,longer lifetimes,higher S/N ratios,and sensitivities,present potential in new applications.However,achieving air stability and long lifetime organic afterglow systems with tunable emission color still remains a challenge.Herein,we have designed and synthesized luminescent copolymers exhibiting afterglow emission with tunability including white-light afterglow with considerable quantum yield[Commission Internationale de l’Eclairage(CIE)coordinates(0.32,0.33),ΦP=11%]in the amorphous state through the rarely reported triplet-to-singlet Förster resonance energy transfer(TS-FET).Also,they can emit different colors under UV light,including white-light[CIE coordinates(0.31,0.33),ΦPl=27%].This strategy was achieved by copolymerizing two simple-structured single-benzene-based compounds with acrylamide(AM)in different ratios.In addition,these materials can also be employed as a safety ink for paper paving the way for long lifetime luminescent material applications.
基金Funding information JST FOREST Program,Grant/Award Number:JPMJFR211WKAKENHI+2 种基金Aid for Scicntific Rescarch on Innovative Areas‘π-figuration'Grant/Award Number:17H05171Japan Socicty for the Promotion of Science(JSPS)Early-Career Scientists,Grant/Award Number:22K14671。
文摘Flexible molecular crystal waveguides based on elastic molecular crystals(EMCs)are essential inflexible and compact optical materials.An increased loss coeffi-cientαdue to self-absorption is often a problem in optical waveguides(OWGs)offluorescent chemical materials waveguiding photons in active mode.Herein,the development of anthracene-based elastic mixed molecular crystals(EMMCs)is reported for Förster Resonance Energy Transfer(FRET)-assisted OWG.To yield a FRET crystal system based on elastic molecular crystals,1%–5%accep-tor doping forfluorescent molecular crystals of 9,10-dibromoanthracene 1 was successful by selecting the same regioisomer having electron-withdrawing group,9,10-diformylanthracene 2,as a dopant.In addition to conversion to the mixed system,there is a difference in the elastic modulus and hardness in EMC C1 and EMMC C2@1.However,the elastic behaviour was also shown in a few percent doping of the acceptor.Theαvalue of this EMMC,composed of 1 including 1%of 2(0.0077 dB/μm),is much lower than that of EMC composed of 1(0.1258 dB/μm)because of reducing self-absorption in the FRET system.An efficient andflexible OWG was successfully developed by selecting an appropriate acceptor molecule and its low doping rate for mixed crystal construction.This method is a practical approach in various functional andflexible crystal systems.
基金support from the National Natural Science Foundation of China(nos.21975188,21772149,and 21905211)the China Postdoctoral Science Foundation(nos.2019TQ0234 and 2019M652692).
文摘The assembly of Förster resonance energy transfer(FRET)donor and acceptor for amplified fluorescence sensing has been considered a big challenge.Herein,by using the multivariate approach,we report the design and synthesis of a series of FRET-based metal–organic frameworks(MOFs)with variable donor fluorophore-to-the-acceptor ratios.
基金supported by the financial aid from the Ministry of Science and Technology of China(Nos.2021YFF0701800,and 2022YFB3503700)the National Natural Science Foundation of China(No.22020102003)+2 种基金the International Partnership Program of Chinese Academy of Sciences(No.121522KYSB20190022)Department of Science and Technology of Jilin Province(Nos.20220101063JC,and 20200201423JC)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y201947).
文摘Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging treatment modality,and the key for achieving high-efficiency PDT is to select light with strong tissue penetration depth and enhance the generation of reactive oxygen species(ROS).Although the upconversion nanoparticles(UCNPs)modified with the photosensitizers could achieve PDT with strong penetration depth under near-infrared light irradiation,the ROS generated by traditional single-pathway PDT is still insufficient.Herein,we developed a novel nanoconjugate(UCNP-Ce6/AIEgen)for dual-pathway reinforced PDT,in which the UCNPs were co-modified with chlorin e6(Ce6)and luminogen with aggregation-induced emission(AIEgen).Due to the presence of AIEgen,UCNP-Ce6/AIEgen could avoid aggregation-caused luminescence quenching in biological water environments and convert upconversion luminescence(UCL)of UCNPs to Ce6-activatable fluorescence.Therefore,under the irradiation of 808 nm laser,UCNP-Ce6/AIEgen can not only undergo direct lanthanide-triplet energy transfer to activate Ce6,but also convert the UCL of UCNPs to the light that can activate Ce6 through Fӧrster resonance energy transfer to generate more ROS,thus promoting tumor cell apoptosis.This work broadens the applications of nanoconjugates of lanthanide-based inorganic materials and organic dyes,and provides a conception for reinforced PDT of tumors.
文摘Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-labelled peptide was quenched by CNPs.The sensor reacted with trypsin to cleave the peptide,resulting in the release of the dye moiety and a substantial increase in fluorescence intensity,which was dose-and time-dependent,and trypsin could be quantified accordingly.Correspondingly,the biosensor has led to the development of a convenient and efficient fluorescent method to measure trypsin activity,with a detection limit of 0.7 mg/mL.The method allows rapid determination of trypsin activity in the normal and acute pancreatitis range,suitable for point-of-care testing.Furthermore,the applicability of the method has been demonstrated by detecting trypsin in spiked urine samples.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.61775241)the Hunan Science Fund for Distinguished Young Scholar(2020JJ2059)+3 种基金Youth Innovation Team(Grant No.2019012)of CSU,Hunan province key research and development project(Grant No.2019GK2233,Grant 2020SK2053)Hunan Province Graduate Research and Innovation Project(Grant No.CX20190177)the Science and Technology Innovation Basic Research Project of Shenzhen(Grant No.JCYJ20180307151237242)Also,YPL acknowledges the support by the Project of State Key Laboratory of High-Performance Complex Manufacturing,Central South University(Grant No.ZZYJKT2020-12).Besides,we acknowledge the art work from Servier Medical Art.Y.Z.O and Y.P.L contributed equally to this work.
文摘Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence.Because fluorescence lifetime is sensitive to microenvironments and molecule alterations,FLIM is promising for the detection of pathological conditions.Current cancer-related FLIM applications can be divided into three main categories:(i)FLIM with autofluorescence molecules in or out of a cell,especially with reduced form of nicotinamide adenine dinucleotide,and flavin adenine dinucleotide for cellular metabolism research;(ii)FLIM with Förster resonance energy transfer for monitoring protein interactions;and(iii)FLIM with fluorophore-dyed probes for specific aberration detection.Advancements in nanomaterial production and efficient calculation systems,as well as novel cancer biomarker discoveries,have promoted FLIM optimization,offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring.This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development.We also highlight current challenges and provide perspectives for further investigation.
基金supported by the National Natural Science Foundation of China(Grant No.62135003)Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0303040003).
文摘Structured illumination-based super-resolution Förster resonance energy transfer microscopy(SIM-FRET)provides an approach to resolving molecular behavior localized in intricate biological structures in living cells.However,SIM reconstruction artifacts will decrease the quantitative analysis fidelity of SIMFRET signals.To address these issues,we have developed a method called HiFi spectrum optimization SIM-FRET(HiFi-SO-SIM-FRET),which uses optimized Wiener parameters in the two-step spectrum optimization to suppress sidelobe artifacts and achieve super-resolution quantitative SIM-FRET.We validated our method by demonstrating its ability to reduce reconstruction artifacts while maintaining the accuracy of FRET signals in both simulated FRET models and live-cell FRET-standard construct samples.In summary,HiFi-SO-SIM-FRET provides a promising solution for achieving high spatial resolution and reducing SIM reconstruction artifacts in quantitative FRET imaging.
文摘Biomolecular systems,such as proteins,crucially rely on dynamic processes at the nanoscale.Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that controlbiomolecular systems.Single-molecule fluorescence resonance energy transfer(smFRET)is a powerful technique to observe inreal-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states.Currently,this technique is fundamentally limited by irreversible photobleaching,causing the untimely end of the experiment andthus,a narrow temporal bandwidth of≤3 orders of magnitude.Here,we introduce“DyeCycling”,a measurement scheme withwhich we aim to break the photobleaching limit in smFRET.We introduce the concept of spontaneous dye replacement bysimulations,and as an experimental proof-of-concept,we demonstrate the intermittent observation of a single biomolecule forone hour with a time resolution of milliseconds.Theoretically,DyeCycling can provide>100-fold more information per singlemolecule than conventional smFRET.We discuss the experimental implementation of DyeCycling,its current and fundamentallimitations,and specific biological use cases.Given its general simplicity and versatility,DyeCycling has the potential torevolutionize the field of time-resolved smFRET,where it may serve to unravel a wealth of biomolecular dynamics by bridgingfrom milliseconds to the hour range.
基金This work was supported financially by the National Natural Science Foundation of China(Nos.51602200,61874074,51633006,51703160,91433115,21473222,and 21661132006)the Key Project of the Department of Education of Guangdong Province(No.2016KZDXM008)+1 种基金the Shenzhen Peacock Plan(No.KQTD2016053112042971)the Chinese Academy of Sciences.
文摘Key challenges in the development of organic light-emitting transistors(OLETs)are blocking both scientific research and practical applications of these devices,e.g.,the absence of high-mobility emissive organic semiconductor materials,low device efficiency,and color tunability.Here,we report a novel device configuration called the energy transfer organic light-emitting transistor(ET-OLET)that is intended to overcome these challenges.An organic fluorescent dye-doped polymethyl methacrylate(PMMA)layer is inserted below the conventional high-mobility organic semiconductor layer in a single-component OLET to separate the functions of the charge transport and light-emitting layers,thus making the challenge to essentially integrate the high mobility and emissive functions within a single organic semiconductor in a conventional OLET or multilayer OLET unnecessary.In this architecture,there is little change in mobility,but the external quantum efficiency(EQE)of the ET-OLET is more than six times that of the conventional OLET because of the efficient Förster resonance energy transfer,which avoids exciton-charge annihilation.In addition,the emission color can be tuned from blue to white to green-yellow using the sourcedrain and gate voltages.The proposed structure is promising for use with electrically pumped organic lasers.
基金supported by funds from the National Natural Science Foundation of China (No. 31570754)Tsinghua-Peking Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology to C. ChenLab Innovation Funding from Lab and Instrument Department, Tsinghua University to W. Wang
文摘Elongation factor 4(EF4) is one of the highly conserved translational GTPases, whose functions are largely unknown. Structures of EF4 bound ribosomal PRE-translocation and POST-translocation complexes have both been visualized. On top of cellular, structural, and biochemical studies, several controversial models have been raised to rationalize functions of EF4. However, how EF4 modulates elongation through its interactions with ribosomes has not been revealed. Here, using single-molecule fluorescence resonance energy transfer assays, we directly captured short-lived EF4·GTP bound ribosomal PRE and POST translocation complexes, which may adopt slightly different conformations from structures prepared using GDP, GDPNP, or GDPCP. Furthermore, we revealed that EF4·GTP severely impairs delivery of aminoacyl-tRNA into the A-site of the ribosome and moderately accelerates translocation. We proposed that functions of EF4 are to slow overall elongation and to stall majority of ribosomes in POST states under stress conditions.
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Science and Engineering under an award FWP 65357 at Pacific Northwest National Laboratory(PNNL)the Cougar Cage Fund for the work of biological imaging and detection of microRNA.Development of peptoid synthesis capabilities was supported by the Materials Synthesis and Simulation Across Scales(MS3)Initiative through the Laboratory Directed Research and Development(LDRD)program at PNNL.XRD work was conducted at the Advanced Light Source(ALS)of Lawrence Berkeley National Laboratory+1 种基金supported by the Office of Science(No.DE-AC02-05CH11231)PNNL is multi-program national laboratory operated for Department of Energy by Battelle(No.DE-AC05-76RL01830).
文摘Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.
基金supported by the National Natural Science Foundation of China(Grant No.21735003).
文摘N6-methyladenosine(m^(6)A)plays an important role in embryogenesis,nuclear export,transcription splicing,and protein translation control.Herein,we demonstrate a copper-free click chemistry-mediated assembly of single quantum dot(QD)nanosensor for accurately monitoring locus-specific m^(6)A in cancer cells.The m^(6)A-sensitive endoribonuclease MazF can digest the unmethylated A-RNA,and the intact m^(6)A-RNA then hybridizes with DNA probes a and b to produce a sandwich hybrid,initiating the click chemistry to generate probe a–b ligation product via first tandem ligation detection reaction(LDR)cycle.Subsequently,DNA probes c and d can hybridize with the probe a–b ligation product to generate the probe c–d ligation product via second LDR cycle.Both LDR cycles can be repeated through denaturation and annealing reaction to generate abundant biotin-/fluorophore-modified probe c–d ligation products that can easily assemble on the QD surface to induce distinct fluorescence resonance energy transfer(FRET)between QD and Cy5.This assay can be homogenously performed without the involvement of copper catalyst,m^(6)A-specific antibody,radioactive labeling,ligase enzyme,enzymatic reverse transcription,and next-generation sequencing.Moreover,it can discriminate even 0.01% m^(6)A level in complex samples and accurately measure cellular m^(6)A-RNA expression,providing a promising avenue for clinical diagnostics and biomedical research.
文摘The accurate detection of blood glucose is of critical importance in the diagnosis and management of diabetes and its complications. Herein, we report a novel strategy based on an upconversion nanoparticles-polydopamine (UCNPs-PDA) nanosystem for the accurate detection of glucose in human serum and whole blood through a simple blending of test samples with ligand-free UCNPs, dopamine, and glucose oxidase (GOx). Owing to the high affinity of lanthanide ions exposed on the surface of ligand-free UCNPs, dopamine monomers could spontaneously attach to the UCNPs and further polymerize to form a PDA shell resulting in a remarkable upconversion luminescence (UCL) quenching (97.4%) of UCNPs under 980-nm excitation. Such UCL quenching can be effectively inhibited by H2O2 produced from the GOx/glucose enzymatic reaction, thus enabling the detection of H2O2 or glucose based on the UCL quenching/inhibition bioassay. Owing to the highly sensitive UCL response and background-free interference of the UCNPs-PDA nanosystem, we achieved a sensitive, selective, and high-throughput bioassay for glucose in human serum and whole blood, thereby revealing the great potential of the UCNPs-PDA nanosystem for the accurate detection of blood glucose or other HRO2-generated biomolecules in clinical bioassays.