BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosi...BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosis.METHODS A single-center retrospective study was performed in 62 patients with suspected parenchymal liver disease.MR sequences included two-point Dixon,six-point Dixon,MR spectroscopy(MRS)and MR elastography.Fat fraction(FF)estimates on the Dixon techniques were compared to the MRS-proton density FF(PDFF).Statistical tests used included Pearson’s correlation and receiver operating characteristic.RESULTS FF estimates on the Dixon techniques showed excellent correlation(≥0.95)with MRS-PDFF,and excellent accuracy[area under the receiver operating characteristic(AUROC)≥0.95]in:(1)Detecting steatosis;and(2)Grading severe steatosis,(P<0.001).In iron overload,two-point Dixon was not evaluable due to confounding T2*effects.FF estimates on six-point Dixon vs MRS-PDFF showed a moderate correlation(0.82)in iron overload vs an excellent correlation(0.97)without iron overload,(P<0.03).The accuracy of six-point Dixon in grading mild steatosis improved(AUROC:0.59 to 0.99)when iron overload cases were excluded.The excellent correlation(>0.9)between the Dixon techniques vs MRSPDFF did not change in the presence of liver fibrosis(P<0.01).CONCLUSION Dixon techniques performed satisfactorily for the evaluation of hepatic steatosis but with exceptions.展开更多
Crohn's disease (CD) is a chronic autoimmune disorder that affects mainly young people. The clinical management is based on the Crohn's Disease Activity Index and especially on biologic parameters with or with...Crohn's disease (CD) is a chronic autoimmune disorder that affects mainly young people. The clinical management is based on the Crohn's Disease Activity Index and especially on biologic parameters with or without additional endoscopic and imaging procedures, such as barium and computed tomography examinations. Recently, magnetic resonance (MR) imaging has been a promising diagnostic radiologic technique with lack of ionizing radiation, enabling superior tissue contrast resolution due to new pulse-sequence developments. Therefore, MR enterography has the potential to become the modality of choice for imaging the small bowel in CD patients.展开更多
BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers.Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens.Conven...BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers.Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens.Conventional techniques are often associated with acute gastrointestinal toxicities,as adjacent critical structures such as the duodenum ultimately limits delivered doses.Stereotactic body radiotherapy(SBRT)is an advanced radiation technique that delivers highly ablative radiation split into several fractions,with a steep dose fall-off outside target volumes.AIM To discuss the latest data on SBRT and whether there is a role for magnetic resonance-guided techniques in multimodal management of locally advanced,unresectable pancreatic cancer.METHODS We conducted a search on multiple large databases to collate the latest records on radiotherapy techniques used to treat pancreatic cancer.Out of 1229 total records retrieved from our search,36 studies were included in this review.RESULTS Studies indicate that SBRT is associated with improved clinical efficacy and toxicity profiles compared to conventional radiotherapy techniques.Further dose escalation to the tumour with SBRT is limited by the poor soft-tissue visualisation of computed tomography imaging during radiation planning and treatment delivery.Magnetic resonance-guided techniques have been introduced to improve imaging quality,enabling treatment plan adaptation and re-optimisation before delivering each fraction.CONCLUSION Therefore,SBRT may lead to improved survival outcomes and safer toxicity profiles compared to conventional techniques,and the addition of magnetic resonance-guided techniques potentially allows dose escalation and conversion of unresectable tumours to operable cases.展开更多
Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a power...Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.展开更多
BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to...BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis strategy by avoiding DST when there is a high probability of the need for≥3 linear stapler cartridges.展开更多
Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an ...Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an unknown time window.Methods:The research work was carried out in our hospital,the work was carried out from November 2018 to November 2019,the patients with acute anterior circulation large vessel occlusion with cerebral infarction who were treated in our hospital during this period,100 patients,50 patients with an unknown time window and 50 patients with definite time window were selected,and they were named as the experimental and control groups,given different examination methods,were given to investigate the clinical treatment effect.Results:Patients’data on HIHSS score before treatment,the incidence of intracranial hemorrhage and rate of Mrs≤2 rating after 90 days of treatment were not significantly different(P>0.05),which was not meaningful.The differences in data between the two groups concerning HIHSS scores were relatively significant before,and after treatment(P<0.05).Conclusion:The magnetic resonance double mismatch technique will be applied in the endovascular treatment of acute anterior circulation large vessel occlusion with cerebral infarction of unknown time window.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential...Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.展开更多
Magnetic resonance elastography(MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vi...Magnetic resonance elastography(MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging(MRI) sequence. Fundamentally,MRE employs the same physical property that physicians utilize when performing manual palpation- that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation ",MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems,MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid,reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995,the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review,the mechanical properties of soft tissues,principles of MRE,clinical applications of MRE in the liver and beyond,and limitations and future directions of this discipline-are discussed. Selected diagrams and images are provided for illustration.展开更多
Locoregional treatments,as alternatives to surgery,play a key role in the management of hepatocellular carcinoma(HCC).Liver magnetic resonance imaging(MRI)enables a multiparametric assessment,going beyond the traditio...Locoregional treatments,as alternatives to surgery,play a key role in the management of hepatocellular carcinoma(HCC).Liver magnetic resonance imaging(MRI)enables a multiparametric assessment,going beyond the traditional dynamic computed tomography approach.Moreover,the use of hepatobiliary agents can improve diagnostic accuracy and are becoming important in the diagnosis and follow-up of HCC.However,the main challenge is to quickly identify classical responses to loco-regional treatments in order to determine the most suitable management strategy for each patient.The aim of this review is to provide a summary of the most common and uncommon liver MRI findings in patients who underwent loco-regional treatments for HCC,with a special focus on ablative therapies(radiofrequency,microwaves and cryoablation),transarterial chemoembolization,trans-arterial radio-embolization and stereotactic ablative radiotherapy techniques,considering the usefulness of gadoxetate disodium(Gd-EOB-DTPA)contrast agent.展开更多
The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to att...The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.展开更多
Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted ima...Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted imaging (DWI) and dynamic enhanced magnetic resonance imaging (DCE-MRI) are now widely used. At present, with the continuous advancement of magnetic resonance technology, Magnetic resonance spectroscopy (MRS), Perfusion weighted imaging (PWI), Positron emission tomography-magnetic resonance imaging (PET-MRI) and so on are gradually being used in clinical practice. Mammography imaging and imaging genomics are hot topics. This article will briefly introduce several functional magnetic resonance techniques and their latest applications.展开更多
Driven by the needs of precision medicine,current imaging techniques are under continuous development to offer more accurate and comprehensive information beyond traditional macroscopic anatomical images.Multispectral...Driven by the needs of precision medicine,current imaging techniques are under continuous development to offer more accurate and comprehensive information beyond traditional macroscopic anatomical images.Multispectral color-coded(multicolor)^(19)F magnetic resonance imaging(MRI)is receiving increasing attention owing to its capability for visualizing quantitative and multiplexed molecular information during various biological processes.The chemical design and preparation of^(19)F probes lie at the core of multicolor^(19)F MRI since their performance dominates the accomplishment of this technique.Herein,the working principles of multicolor^(19)F MRI are briefly introduced.Recent progress on multicolor^(19)F MRI probes for simultaneous in vivo visualization of multiple biological targets is summarized.Finally,current challenges and potential solutions in this fast-developing field are discussed.展开更多
Objective Segmentation of medical images is a crucial process in various image analysis applications.Automated segmentation methods excel in accuracy when compared to manual segmentation in the context of medical imag...Objective Segmentation of medical images is a crucial process in various image analysis applications.Automated segmentation methods excel in accuracy when compared to manual segmentation in the context of medical image analysis.One of the essential phases in the quantitative analysis of the brain is automated brain tissue segmentation using clinically obtained magnetic resonance imaging(MRI)data.It allows for precise quantitative examination of the brain,which aids in diagnosis,identification,and classification of disorders.Consequently,the efficacy of the segmentation approach is crucial to disease diagnosis and treatment planning.Methods This study presented a hybrid optimization method for segmenting brain tissue in clinical MRI scans us-ing a fractional Henry horse herd gas optimization-based Shepard convolutional neural network(FrHHGO-based ShCNN).To segment the clinical brain MRI images into white matter(WM),grey matter(GM),and cerebrospinal fluid(CSF)tissues,the proposed framework was evaluated on the Lifespan Human Connectome Projects(HCP)database.The hybrid optimization algorithm,FrHHGO,integrates the fractional Henry gas optimization(FHGO)and horse herd optimization(HHO)algorithms.Training required 30 min,whereas testing and segmentation of brain tissues from an unseen image required an average of 12 s.Results Compared to the results obtained with no refinements,the Skull stripping refinement showed significant improvement.As the method included a preprocessing stage,it was flexible enough to enhance image quality,allowing for better results even with low-resolution input.Maximum precision of 93.2%,recall of 91.5%,Dice score of 91.1%,and F1-score of 90.5% were achieved using the proposed FrHHGO-based ShCNN,which was superior to all other approaches.展开更多
The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been th...The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been the only suitable methods for this purpose. In recent years, several alternative imaging techniques have been proposed. To review the most recent advances in imaging studies of the small bowel, with particular reference to their possible application in Crohn's disease, we conducted a complete review of the most important studies in which traditional and newer imaging methods were performed and compared in patients with Crohn's disease. Several radiological and endoscopic techniques are now available for the study of the small bowel; each of them is characterized by a distinct profile of favourable and unfavourable features. In some cases, they may also be used as complementary rather than alternative techniques. In everyday practice, the choice of the technique to be used stands upon its availability and a careful evaluation of diagnostic accuracy, clinical usefulness, safety and cost. The recent development ofinnovative imaging techniques has opened a new and exciting area in the exploration of the small bowel in Crohn's disease patients.展开更多
文摘BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosis.METHODS A single-center retrospective study was performed in 62 patients with suspected parenchymal liver disease.MR sequences included two-point Dixon,six-point Dixon,MR spectroscopy(MRS)and MR elastography.Fat fraction(FF)estimates on the Dixon techniques were compared to the MRS-proton density FF(PDFF).Statistical tests used included Pearson’s correlation and receiver operating characteristic.RESULTS FF estimates on the Dixon techniques showed excellent correlation(≥0.95)with MRS-PDFF,and excellent accuracy[area under the receiver operating characteristic(AUROC)≥0.95]in:(1)Detecting steatosis;and(2)Grading severe steatosis,(P<0.001).In iron overload,two-point Dixon was not evaluable due to confounding T2*effects.FF estimates on six-point Dixon vs MRS-PDFF showed a moderate correlation(0.82)in iron overload vs an excellent correlation(0.97)without iron overload,(P<0.03).The accuracy of six-point Dixon in grading mild steatosis improved(AUROC:0.59 to 0.99)when iron overload cases were excluded.The excellent correlation(>0.9)between the Dixon techniques vs MRSPDFF did not change in the presence of liver fibrosis(P<0.01).CONCLUSION Dixon techniques performed satisfactorily for the evaluation of hepatic steatosis but with exceptions.
文摘Crohn's disease (CD) is a chronic autoimmune disorder that affects mainly young people. The clinical management is based on the Crohn's Disease Activity Index and especially on biologic parameters with or without additional endoscopic and imaging procedures, such as barium and computed tomography examinations. Recently, magnetic resonance (MR) imaging has been a promising diagnostic radiologic technique with lack of ionizing radiation, enabling superior tissue contrast resolution due to new pulse-sequence developments. Therefore, MR enterography has the potential to become the modality of choice for imaging the small bowel in CD patients.
文摘BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers.Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens.Conventional techniques are often associated with acute gastrointestinal toxicities,as adjacent critical structures such as the duodenum ultimately limits delivered doses.Stereotactic body radiotherapy(SBRT)is an advanced radiation technique that delivers highly ablative radiation split into several fractions,with a steep dose fall-off outside target volumes.AIM To discuss the latest data on SBRT and whether there is a role for magnetic resonance-guided techniques in multimodal management of locally advanced,unresectable pancreatic cancer.METHODS We conducted a search on multiple large databases to collate the latest records on radiotherapy techniques used to treat pancreatic cancer.Out of 1229 total records retrieved from our search,36 studies were included in this review.RESULTS Studies indicate that SBRT is associated with improved clinical efficacy and toxicity profiles compared to conventional radiotherapy techniques.Further dose escalation to the tumour with SBRT is limited by the poor soft-tissue visualisation of computed tomography imaging during radiation planning and treatment delivery.Magnetic resonance-guided techniques have been introduced to improve imaging quality,enabling treatment plan adaptation and re-optimisation before delivering each fraction.CONCLUSION Therefore,SBRT may lead to improved survival outcomes and safer toxicity profiles compared to conventional techniques,and the addition of magnetic resonance-guided techniques potentially allows dose escalation and conversion of unresectable tumours to operable cases.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2015CB921002)
文摘Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
基金Shanghai Jiaotong University,No.YG2019QNB24This study was reviewed and approved by Ruijin Hospital Ethics Committee(Approval No.2019-82).
文摘BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis strategy by avoiding DST when there is a high probability of the need for≥3 linear stapler cartridges.
文摘Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an unknown time window.Methods:The research work was carried out in our hospital,the work was carried out from November 2018 to November 2019,the patients with acute anterior circulation large vessel occlusion with cerebral infarction who were treated in our hospital during this period,100 patients,50 patients with an unknown time window and 50 patients with definite time window were selected,and they were named as the experimental and control groups,given different examination methods,were given to investigate the clinical treatment effect.Results:Patients’data on HIHSS score before treatment,the incidence of intracranial hemorrhage and rate of Mrs≤2 rating after 90 days of treatment were not significantly different(P>0.05),which was not meaningful.The differences in data between the two groups concerning HIHSS scores were relatively significant before,and after treatment(P<0.05).Conclusion:The magnetic resonance double mismatch technique will be applied in the endovascular treatment of acute anterior circulation large vessel occlusion with cerebral infarction of unknown time window.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
文摘Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.
基金Supported by National Institutes of HealthNo.R01 EB001981National Institute of Health Research Cambridge Biomedical Research Centre
文摘Magnetic resonance elastography(MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging(MRI) sequence. Fundamentally,MRE employs the same physical property that physicians utilize when performing manual palpation- that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation ",MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems,MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid,reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995,the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review,the mechanical properties of soft tissues,principles of MRE,clinical applications of MRE in the liver and beyond,and limitations and future directions of this discipline-are discussed. Selected diagrams and images are provided for illustration.
文摘Locoregional treatments,as alternatives to surgery,play a key role in the management of hepatocellular carcinoma(HCC).Liver magnetic resonance imaging(MRI)enables a multiparametric assessment,going beyond the traditional dynamic computed tomography approach.Moreover,the use of hepatobiliary agents can improve diagnostic accuracy and are becoming important in the diagnosis and follow-up of HCC.However,the main challenge is to quickly identify classical responses to loco-regional treatments in order to determine the most suitable management strategy for each patient.The aim of this review is to provide a summary of the most common and uncommon liver MRI findings in patients who underwent loco-regional treatments for HCC,with a special focus on ablative therapies(radiofrequency,microwaves and cryoablation),transarterial chemoembolization,trans-arterial radio-embolization and stereotactic ablative radiotherapy techniques,considering the usefulness of gadoxetate disodium(Gd-EOB-DTPA)contrast agent.
基金Project supported in part by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)in part by the National Natural Science Foundation of China(Grant No.11204339)
文摘The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.
文摘Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted imaging (DWI) and dynamic enhanced magnetic resonance imaging (DCE-MRI) are now widely used. At present, with the continuous advancement of magnetic resonance technology, Magnetic resonance spectroscopy (MRS), Perfusion weighted imaging (PWI), Positron emission tomography-magnetic resonance imaging (PET-MRI) and so on are gradually being used in clinical practice. Mammography imaging and imaging genomics are hot topics. This article will briefly introduce several functional magnetic resonance techniques and their latest applications.
基金The authors thank the financial support from the National Natural Science Foundation of China(22125702,22077107,and 92059109)the Natural Science Foundation of Fujian Province of China(2020J02001)the Youth Innovation Funding Program of Xiamen City(3502Z20206051).
文摘Driven by the needs of precision medicine,current imaging techniques are under continuous development to offer more accurate and comprehensive information beyond traditional macroscopic anatomical images.Multispectral color-coded(multicolor)^(19)F magnetic resonance imaging(MRI)is receiving increasing attention owing to its capability for visualizing quantitative and multiplexed molecular information during various biological processes.The chemical design and preparation of^(19)F probes lie at the core of multicolor^(19)F MRI since their performance dominates the accomplishment of this technique.Herein,the working principles of multicolor^(19)F MRI are briefly introduced.Recent progress on multicolor^(19)F MRI probes for simultaneous in vivo visualization of multiple biological targets is summarized.Finally,current challenges and potential solutions in this fast-developing field are discussed.
文摘Objective Segmentation of medical images is a crucial process in various image analysis applications.Automated segmentation methods excel in accuracy when compared to manual segmentation in the context of medical image analysis.One of the essential phases in the quantitative analysis of the brain is automated brain tissue segmentation using clinically obtained magnetic resonance imaging(MRI)data.It allows for precise quantitative examination of the brain,which aids in diagnosis,identification,and classification of disorders.Consequently,the efficacy of the segmentation approach is crucial to disease diagnosis and treatment planning.Methods This study presented a hybrid optimization method for segmenting brain tissue in clinical MRI scans us-ing a fractional Henry horse herd gas optimization-based Shepard convolutional neural network(FrHHGO-based ShCNN).To segment the clinical brain MRI images into white matter(WM),grey matter(GM),and cerebrospinal fluid(CSF)tissues,the proposed framework was evaluated on the Lifespan Human Connectome Projects(HCP)database.The hybrid optimization algorithm,FrHHGO,integrates the fractional Henry gas optimization(FHGO)and horse herd optimization(HHO)algorithms.Training required 30 min,whereas testing and segmentation of brain tissues from an unseen image required an average of 12 s.Results Compared to the results obtained with no refinements,the Skull stripping refinement showed significant improvement.As the method included a preprocessing stage,it was flexible enough to enhance image quality,allowing for better results even with low-resolution input.Maximum precision of 93.2%,recall of 91.5%,Dice score of 91.1%,and F1-score of 90.5% were achieved using the proposed FrHHGO-based ShCNN,which was superior to all other approaches.
文摘The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been the only suitable methods for this purpose. In recent years, several alternative imaging techniques have been proposed. To review the most recent advances in imaging studies of the small bowel, with particular reference to their possible application in Crohn's disease, we conducted a complete review of the most important studies in which traditional and newer imaging methods were performed and compared in patients with Crohn's disease. Several radiological and endoscopic techniques are now available for the study of the small bowel; each of them is characterized by a distinct profile of favourable and unfavourable features. In some cases, they may also be used as complementary rather than alternative techniques. In everyday practice, the choice of the technique to be used stands upon its availability and a careful evaluation of diagnostic accuracy, clinical usefulness, safety and cost. The recent development ofinnovative imaging techniques has opened a new and exciting area in the exploration of the small bowel in Crohn's disease patients.