Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such...The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy(STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu(111) by non-contact atomic force microscopy(nc-AFM).Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C–H and C–C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory(DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C–Cu bond(s) with the underlying copper atoms, and hence stand on the substrate.By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu(111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.展开更多
The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements w...The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements with different loading/unloading schemes on chemically polished bulk titanium a substantial decrease of both modulus and hardness vs an increasing loading time was found. Then, hard nanostructured TiBN and TiCrBN thin films deposited by magnetron sputtering (using multiphase targets) on substrates of high roughness (sintered hard metal) and low roughness (silicon) were studied. Experimental modulus and hardness characterized by using two different nanoindenter tools were within the limits of standard deviation. However, a strong effect of roughness on the spread of the experimental values was observed and it was found that hardness and elastic indentation modulus obeyed a Gaussian distribution. The experimental data were discussed together with scanning probe microscopy (SPM) images of typical imprints taken after the nanoindentation tests and the local topographyls strong correlation with the results of nanoindentation was described.展开更多
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region...Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.展开更多
We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SN...We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SNOM image contrast between the two sides of the step changes periodically at different scan heights. For a step height of-λ/2, the image contrast remains approximately the same. The probe-sample interaction determines the SNOM image contrast here. The influence of different refractive indices of the sample has been also analysed by using a simple theoretical model.展开更多
The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contact...The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contacting surfaces with a slide glass during the curing were studied. Scanning Electron Microscope (SEM) observation at a magnification of 7000 revealed smooth surfaces with no holes. The surface roughness calculated from the SPM measurement was 4 nm. The surface potential and the frictional force measured by SPM were uniform throughout the measured area 24 h after the curing. However, spots of low surface potential and stains of low frictional force and low viscoelasticity were observed one month after curing. This change was attributed to the carbonation of hydrates.展开更多
By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comp...By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.展开更多
Scanning probe microscopes (SPM) are limited in their speed of data acquisition by the mechanical stability of the scanner. Therefore many types of scanners have been developed to achieve a rigid setup while maintaini...Scanning probe microscopes (SPM) are limited in their speed of data acquisition by the mechanical stability of the scanner. Therefore many types of scanners have been developed to achieve a rigid setup while maintaining an acceptable image size. We have followed here a different path to accelerate data acquisition by improving the feedback loop to achieve the same SPM image quality in a shorter time. While the feedback loop in a scanning probe microscope typically starts to probe a new pixel starting from the previous position, we have reduced the total control time by using an improved starting point for the feedback loop at each pixel. By exploiting the information of the already scanned pixels a forecast for the new pixel is created. We have successfully used several simple methods for a prognosis in MATLAB simulations like one dimensional linear or cubic extrapolation and others. Only scanning tunnelling microscope data from real experiments were used to test the forecasts. A doubling of the speed was achieved in the most favourable cases.展开更多
The rational design of efficient artificial photosynthetic components requires thorough understandings towards(photo)electrochemical properties and kinetic processes at the solid/liquid interface.Electrochemical scann...The rational design of efficient artificial photosynthetic components requires thorough understandings towards(photo)electrochemical properties and kinetic processes at the solid/liquid interface.Electrochemical scanning probe microscopy(EC-SPM),which enables the high-spatial resolution imaging in an electrolyte environment,becomes an indispensable experimental technique for operando studies of(photo)electrochemistry.This review summarizes the latest results of relevant ECSPM techniques to study the interfacial properties of electrocatalysts and photoelectrodes.Covered methods include atomic force microscopy,Kelvin probe force microscopy,conductive atomic force microscopy,scanning tunneling microscopy,scanning electrochemical microscopy,and other advanced SPM-based operando techniques.Finally,we offer some perspectives on the future outlook in this fascinating research area.展开更多
Two-dimensional(2D)materials distinguish themselves by high specific surface areas and wide tunability in nanophotonics research.As the developing of 2D materials optical and opto-electronic investigations,scanning pr...Two-dimensional(2D)materials distinguish themselves by high specific surface areas and wide tunability in nanophotonics research.As the developing of 2D materials optical and opto-electronic investigations,scanning probe microscopy provides high spatial resolution and strong local field confinement,which can realize the single molecular and atomic level of characterization.Here,we review the nanophotonic and opto-electronic features of both pristine and hybrid 2Dmaterials which are measured by scanning probe microscopy.The conclusion and prospective of scanning probe techniques for the future2Dmaterials characterization and practical applications are presented.展开更多
In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solution...In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solutions for transmission electron microscopy,mechanical polishing and focused ion beam(FIB)milling have been employed to prepare cross-sectional samples for SPM.We present an optimized solution for thin films and oxide heterostructures that allows for examining the prepared surfaces using various SPM techniques.In particular,post-cleaning after FIB milling is shown to be crucial and precision ion polishing was conducted to remove rough layers on mechanically polished samples.We also study SPM mechanical milling to remove amorphous layers on FIB-milled samples.Consequently,a reliable solution for making cross sections suitable for SPM has been achieved providing a useful methodology that can also be employed for other material systems with different hardness,such as polymers and metals.展开更多
Carbon,as an indispensable chemical element on Earth,has diverse covalent bonding ability,which enables construction of extensive pivotal carbon-based structures in multiple scientific fields.The extraordinary physico...Carbon,as an indispensable chemical element on Earth,has diverse covalent bonding ability,which enables construction of extensive pivotal carbon-based structures in multiple scientific fields.The extraordinary physicochemical properties presented by pioneering synthetic carbon allotropes,typically including fullerenes,carbon nanotubes,and graphene,have stimulated broad interest in fabrication of carbon-based nanostructures and nanomaterials.Accurate regulation of topology,size,and shape,as well as controllably embedding target sp^(n)-hybridized carbons in molecular skeletons,is significant for tailoring their structures and consequent properties and requires atomic precision in their preparation.Scanning probe microscopy(SPM),combined with on-surface synthesis strategy,has demonstrated its capabilities in fabrication of various carbon-based nanostructures and nanomaterials with atomic precision,which has long been elusive for conventional solution-phase synthesis due to realistic obstacles in solubility,isolation,purification,etc.More intriguingly,atom manipulation via an SPM tip allows unique access to local production of highly reactive carbon-based nanostructures.In addition,SPM provides topographic information of carbon-based nanostructures as well as their characteristic electronic structures with unprecedented submolecular resolution in real space.In this review,we overview recent exciting progress in the delicate application of SPM in probing low-dimensional carbon-based nanostructures and nanomaterials,which will open an avenue for the exploration and development of elusive and undiscovered carbon-based nanomaterials.展开更多
Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is...Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.展开更多
The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)i...The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.展开更多
A highly distorted chiral nanographene structure composed of triple corannulene-fused[5]helicenes is prepared with the help of the Heck reaction and oxidative photocyclization with an overall isolated yield of 28%.The...A highly distorted chiral nanographene structure composed of triple corannulene-fused[5]helicenes is prepared with the help of the Heck reaction and oxidative photocyclization with an overall isolated yield of 28%.The complex three-dimensional(3D)structure of the bowl-helix hybrid nanostructure is studied by a combination of noncontact atomic force microscopy(AFM)and scanning tunneling microscopy(STM)on the Cu(111)surface,density functional theory calculations,AFM/STM simulations,and high-performance liquid chromatography-electronic circular dichroism analysis.This examination reveals a molecular structure in which the three bowl-shaped corannulene bladesd position themselves in a C3-symmetric fashion around a highly twisted triphenylene core.The molecule appears to be shaped like a propeller in which the concave side of the bowls face away from the connected[5]helicene motif.The chirality of the nanostructure is confirmed by the direct visualization of both MMM and PPP enantiomers at the single-molecule level by scanning probe microscopies.These results underline that submolecular resolution imaging by AFM/STM is a powerful real-space tool for the stereochemical characterization of 3D curved chiral nanographene structures.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0202300 and 2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61888102,61474141,and 21661132006)+2 种基金the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11604373)the Outstanding Youth Science Foundation,China(Grant No.61622116)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant Nos.XDB28000000 and XDB30000000)
文摘The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy(STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu(111) by non-contact atomic force microscopy(nc-AFM).Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C–H and C–C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory(DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C–Cu bond(s) with the underlying copper atoms, and hence stand on the substrate.By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu(111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.
基金supported by the "Communauté Franaise de Belgique-ARC 04/09-310"was done in the context of the EC VI FW international EXCELL Project
文摘The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements with different loading/unloading schemes on chemically polished bulk titanium a substantial decrease of both modulus and hardness vs an increasing loading time was found. Then, hard nanostructured TiBN and TiCrBN thin films deposited by magnetron sputtering (using multiphase targets) on substrates of high roughness (sintered hard metal) and low roughness (silicon) were studied. Experimental modulus and hardness characterized by using two different nanoindenter tools were within the limits of standard deviation. However, a strong effect of roughness on the spread of the experimental values was observed and it was found that hardness and elastic indentation modulus obeyed a Gaussian distribution. The experimental data were discussed together with scanning probe microscopy (SPM) images of typical imprints taken after the nanoindentation tests and the local topographyls strong correlation with the results of nanoindentation was described.
基金supported by the National Natural Science Foundation of China(Nos.51922056 and 51921005).
文摘Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90206003, 10374005, 10434020, 10521002, 10328407 and 90101027) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040001012).
文摘We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SNOM image contrast between the two sides of the step changes periodically at different scan heights. For a step height of-λ/2, the image contrast remains approximately the same. The probe-sample interaction determines the SNOM image contrast here. The influence of different refractive indices of the sample has been also analysed by using a simple theoretical model.
文摘The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contacting surfaces with a slide glass during the curing were studied. Scanning Electron Microscope (SEM) observation at a magnification of 7000 revealed smooth surfaces with no holes. The surface roughness calculated from the SPM measurement was 4 nm. The surface potential and the frictional force measured by SPM were uniform throughout the measured area 24 h after the curing. However, spots of low surface potential and stains of low frictional force and low viscoelasticity were observed one month after curing. This change was attributed to the carbonation of hydrates.
文摘By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.
文摘Scanning probe microscopes (SPM) are limited in their speed of data acquisition by the mechanical stability of the scanner. Therefore many types of scanners have been developed to achieve a rigid setup while maintaining an acceptable image size. We have followed here a different path to accelerate data acquisition by improving the feedback loop to achieve the same SPM image quality in a shorter time. While the feedback loop in a scanning probe microscope typically starts to probe a new pixel starting from the previous position, we have reduced the total control time by using an improved starting point for the feedback loop at each pixel. By exploiting the information of the already scanned pixels a forecast for the new pixel is created. We have successfully used several simple methods for a prognosis in MATLAB simulations like one dimensional linear or cubic extrapolation and others. Only scanning tunnelling microscope data from real experiments were used to test the forecasts. A doubling of the speed was achieved in the most favourable cases.
基金funded by the National Natural Science Foundation of China(Nos.21872039 and 22072030)the Fundamental Research Funds for the Central Universities(No.20720220008)the Science and Technology Commission of Shanghai Municipality(No.22520711100).
文摘The rational design of efficient artificial photosynthetic components requires thorough understandings towards(photo)electrochemical properties and kinetic processes at the solid/liquid interface.Electrochemical scanning probe microscopy(EC-SPM),which enables the high-spatial resolution imaging in an electrolyte environment,becomes an indispensable experimental technique for operando studies of(photo)electrochemistry.This review summarizes the latest results of relevant ECSPM techniques to study the interfacial properties of electrocatalysts and photoelectrodes.Covered methods include atomic force microscopy,Kelvin probe force microscopy,conductive atomic force microscopy,scanning tunneling microscopy,scanning electrochemical microscopy,and other advanced SPM-based operando techniques.Finally,we offer some perspectives on the future outlook in this fascinating research area.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0205700)National Basic Research Program of China(Grant Nos.2015CB932403&2017YFA0206000)+2 种基金National Natural Science Foundation of China(Grant Nos.11674012,61422501,11374023and 61521004)Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201420)National Program for Support of Top-notch Young Professionals(Grant No.W02070003)
文摘Two-dimensional(2D)materials distinguish themselves by high specific surface areas and wide tunability in nanophotonics research.As the developing of 2D materials optical and opto-electronic investigations,scanning probe microscopy provides high spatial resolution and strong local field confinement,which can realize the single molecular and atomic level of characterization.Here,we review the nanophotonic and opto-electronic features of both pristine and hybrid 2Dmaterials which are measured by scanning probe microscopy.The conclusion and prospective of scanning probe techniques for the future2Dmaterials characterization and practical applications are presented.
文摘In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solutions for transmission electron microscopy,mechanical polishing and focused ion beam(FIB)milling have been employed to prepare cross-sectional samples for SPM.We present an optimized solution for thin films and oxide heterostructures that allows for examining the prepared surfaces using various SPM techniques.In particular,post-cleaning after FIB milling is shown to be crucial and precision ion polishing was conducted to remove rough layers on mechanically polished samples.We also study SPM mechanical milling to remove amorphous layers on FIB-milled samples.Consequently,a reliable solution for making cross sections suitable for SPM has been achieved providing a useful methodology that can also be employed for other material systems with different hardness,such as polymers and metals.
基金financial support from the National Natural Science Foundation of China(Grant Nos.22125203,21790351)the Fundamental Research Funds for the Central Universities(Grant No.22120220051).
文摘Carbon,as an indispensable chemical element on Earth,has diverse covalent bonding ability,which enables construction of extensive pivotal carbon-based structures in multiple scientific fields.The extraordinary physicochemical properties presented by pioneering synthetic carbon allotropes,typically including fullerenes,carbon nanotubes,and graphene,have stimulated broad interest in fabrication of carbon-based nanostructures and nanomaterials.Accurate regulation of topology,size,and shape,as well as controllably embedding target sp^(n)-hybridized carbons in molecular skeletons,is significant for tailoring their structures and consequent properties and requires atomic precision in their preparation.Scanning probe microscopy(SPM),combined with on-surface synthesis strategy,has demonstrated its capabilities in fabrication of various carbon-based nanostructures and nanomaterials with atomic precision,which has long been elusive for conventional solution-phase synthesis due to realistic obstacles in solubility,isolation,purification,etc.More intriguingly,atom manipulation via an SPM tip allows unique access to local production of highly reactive carbon-based nanostructures.In addition,SPM provides topographic information of carbon-based nanostructures as well as their characteristic electronic structures with unprecedented submolecular resolution in real space.In this review,we overview recent exciting progress in the delicate application of SPM in probing low-dimensional carbon-based nanostructures and nanomaterials,which will open an avenue for the exploration and development of elusive and undiscovered carbon-based nanomaterials.
基金support provided by the Spanish Ministry of Science and Innovation(MICINN,Madrid,Spain)the European Regional Development Fund(Brussels,Belgium)MCIN/AEI/10.13039/501100011033/FEDER,UE under grant PID2021-127445NB-I00.
文摘Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.
基金financial support from the National Natural Science Foundation of China(No.51961026)。
文摘The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.
基金Financial support from the Ministry of Education Singapore under the AcRF Tier 1(MOE T1 RG11/21)and AcRF Tier 2(MOE-T2EP10221-0002)The Deutsche Forschungsgemeinschaft via grants(nos.SCHI 619/13 and EB535/1-1)+5 种基金the GRK(Research Training Group)2204“Substitute Materials for Sustainable Energy Technologies”the LOEWE Program of Excellence of the Federal State of Hesse(LOEWE Focus Group PriOSS“Principles of On-Surface Synthesis”)the National Natural Science Foundation of China(grant nos.21790053,51821002,and 22072103)the National Major State Basic Research Development Program of China(grant nos.2017YFA0205000 and 2017YFA0205002)the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 Project are also acknowledged for their financial support.
文摘A highly distorted chiral nanographene structure composed of triple corannulene-fused[5]helicenes is prepared with the help of the Heck reaction and oxidative photocyclization with an overall isolated yield of 28%.The complex three-dimensional(3D)structure of the bowl-helix hybrid nanostructure is studied by a combination of noncontact atomic force microscopy(AFM)and scanning tunneling microscopy(STM)on the Cu(111)surface,density functional theory calculations,AFM/STM simulations,and high-performance liquid chromatography-electronic circular dichroism analysis.This examination reveals a molecular structure in which the three bowl-shaped corannulene bladesd position themselves in a C3-symmetric fashion around a highly twisted triphenylene core.The molecule appears to be shaped like a propeller in which the concave side of the bowls face away from the connected[5]helicene motif.The chirality of the nanostructure is confirmed by the direct visualization of both MMM and PPP enantiomers at the single-molecule level by scanning probe microscopies.These results underline that submolecular resolution imaging by AFM/STM is a powerful real-space tool for the stereochemical characterization of 3D curved chiral nanographene structures.