A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow ...A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.展开更多
Pedestrian detection and tracking are vital elements of today’s surveillance systems,which make daily life safe for humans.Thus,human detection and visualization have become essential inventions in the field of compu...Pedestrian detection and tracking are vital elements of today’s surveillance systems,which make daily life safe for humans.Thus,human detection and visualization have become essential inventions in the field of computer vision.Hence,developing a surveillance system with multiple object recognition and tracking,especially in low light and night-time,is still challenging.Therefore,we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night.In particular,we propose a system that tackles a two-fold problem by detecting multiple pedestrians in infrared(IR)images using machine learning and tracking them using particle filters.Moreover,a random forest classifier is adopted for image segmentation to identify pedestrians in an image.The result of detection is investigated by particle filter to solve pedestrian tracking.Through the extensive experiment,our system shows 93%segmentation accuracy using a random forest algorithm that demonstrates high accuracy for background and roof classes.Moreover,the system achieved a detection accuracy of 90%usingmultiple templatematching techniques and 81%accuracy for pedestrian tracking.Furthermore,our system can identify that the detected object is a human.Hence,our system provided the best results compared to the state-ofart systems,which proves the effectiveness of the techniques used for image segmentation,classification,and tracking.The presented method is applicable for human detection/tracking,crowd analysis,and monitoring pedestrians in IR video surveillance.展开更多
This novel method of Pedestrian Tracking using Support Vector (PTSV) proposed for a video surveillance instrument combines the Support Vector Machine (SVM) classifier into an optic-flow based tracker. The traditional ...This novel method of Pedestrian Tracking using Support Vector (PTSV) proposed for a video surveillance instrument combines the Support Vector Machine (SVM) classifier into an optic-flow based tracker. The traditional method using optical flow tracks objects by minimizing an intensity difference function between successive frames, while PTSV tracks objects by maximizing the SVM classification score. As the SVM classifier for object and non-object is pre-trained, there is need only to classify an image block as object or non-ob-ject without having to compare the pixel region of the tracked object in the previous frame. To account for large motions between successive frames we build pyramids from the support vectors and use a coarse-to-fine scan in the classification stage. To accelerate the training of SVM, a Sequential Minimal Optimization Method (SMO) is adopted. The results of using a kernel-PTSV for pedestrian tracking from real time video are shown at the end. Comparative experimental results showed that PTSV improves the reliability of tracking compared to that of traditional tracking method using optical flow.展开更多
Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has recei...Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has received significant attention from vehicle safety analysts.However,pedestrian protection in parking lots still faces many challenges.For example,the physical structure of a parking lot may be complex,and dead corners would occur when the vehicle density is high.These lead to pedestrians’sudden appearance in the vehicle’s path from an unexpected position,resulting in collision accidents in the parking lot.We advocate that besides vehicular sensing data,high-precision digital map of the parking lot,pedestrians’smart device’s sensing data,and attribute information of pedestrians can be used to detect the position of pedestrians in the parking lot.However,this subject has not been studied and explored in existing studies.Tofill this void,this paper proposes a pedestrian tracking framework integrating multiple information sources to provide pedestrian position and status information for vehicles and protect pedestrians in parking spaces.We also evaluate the proposed method through real-world experiments.The experimental results show that the proposed framework has its advantage in pedestrian attribute information extraction and positioning accuracy.It can also be used for pedestrian tracking in parking spaces.展开更多
Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Fir...Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Firstly,the occlusion judgment is realized by extracting and utilizing deep feature of pedestrian’s appearance,and then the scale adaptive kernelized correlation filter is introduced to implement pedestrian tracking without occlusion.Secondly,Karman filter is introduced to predict the location of occluded pedestrian position.Finally,the deep feature is used to the rematch of pedestrian in the reappearance process.Simulation experiment and analysis show that the proposed algorithm can effectively detect and rematch pedestrian under the condition of frequent or long-term occlusion.展开更多
Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that...Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that exist in it such as crimes,thefts,and so on.Besides,the anomaly detection in pedestrian walkways has gained significant attention among the computer vision communities to enhance pedestrian safety.The recent advances of Deep Learning(DL)models have received considerable attention in different processes such as object detec-tion,image classification,etc.In this aspect,this article designs a new Panoptic Feature Pyramid Network based Anomaly Detection and Tracking(PFPN-ADT)model for pedestrian walkways.The proposed model majorly aims to the recognition and classification of different anomalies present in the pedestrian walkway like vehicles,skaters,etc.The proposed model involves panoptic seg-mentation model,called Panoptic Feature Pyramid Network(PFPN)is employed for the object recognition process.For object classification,Compact Bat Algo-rithm(CBA)with Stacked Auto Encoder(SAE)is applied for the classification of recognized objects.For ensuring the enhanced results better anomaly detection performance of the PFPN-ADT technique,a comparison study is made using Uni-versity of California San Diego(UCSD)Anomaly data and other benchmark data-sets(such as Cityscapes,ADE20K,COCO),and the outcomes are compared with the Mask Recurrent Convolutional Neural Network(RCNN)and Faster Convolu-tional Neural Network(CNN)models.The simulation outcome demonstrated the enhanced performance of the PFPN-ADT technique over the other methods.展开更多
This paper proposes a pedestrian tracking approach using bounding box based on probability densities.It is generally a difficult task to track features like corner points in outdoor images due to complex environment.T...This paper proposes a pedestrian tracking approach using bounding box based on probability densities.It is generally a difficult task to track features like corner points in outdoor images due to complex environment.To solve this problem,the feature points are projected along X and Y direction separately,and a histogram is constructed for each projection,with horizontal axis as positions and vertical axis as the number of feature points that lie on each position.Finally,the vertical axis is normalized for expression as probability.After histogram is constructed,the probability of each feature point is checked with a threshold.A feature point will be ignored if its probability is lower than a threshold,while the remaining feature points are grouped,based on which a bounding box is made.Kanade-Lucas Tomasi(KLT)algorithm is adopted as the tracking algorithm because it is able to track local features in images robustly.The efficiency of the tracking results using this method is verified in real environment test.展开更多
Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope...Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.展开更多
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
In recent years, modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population gr...In recent years, modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through social and physical forces, which is an approach that has been used to simulate crowd behaviour. The target of this work is to describe a comprehensive approach to model a huge number of pedestrians and to simulate high density crowd behaviour in overcrowding places, e.g. sport, concert and pilgrimage places, and to assist engineering in the resolution of complicated problems through integrating a number of models from different research domains.展开更多
Indoor pedestrian localization is of great importance for diverse mobile applications. Many indoor localization approaches have been proposed; among them, Radio Signal Strength (RSS)-based approaches have the advant...Indoor pedestrian localization is of great importance for diverse mobile applications. Many indoor localization approaches have been proposed; among them, Radio Signal Strength (RSS)-based approaches have the advantage of existing infrastructures and avoid the cost of infrastructure deployment. However, the RSS-based localization approaches suffer from poor localization accuracy when the RSS fingerprints are sparse, as illustrated by actual experiments in this study. Here, we propose a novel indoor pedestrian tracking approach for smartphone users; this approach provides a high localization accuracy when the RSS fingerprints are sparse. Besides using the RSS fingerprints, this approach also utilizes the inertial sensor readings on smartphones. This approach has two components: (i) dead-reckoning subsystem that counts the number of walking steps with off-the-shelf inertial sensor readings on smartphones and (ii) particle filtering that computes the locations with only sparse RSS readings. The proposed approach is implemented on Android-based smartphones. Extensive experiments are carried out in both srnafl and large testbeds, The evaluation results show that the tracking approach can achieve a high accuracy of 5 m (up to 95%) in indoor environments with only sparse RSS fingerprints.展开更多
基金Project(50778015)supported by the National Natural Science Foundation of ChinaProject(2012CB725403)supported by the Major State Basic Research Development Program of China
文摘A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+2 种基金Also,this work was partially supported by the Taif University Researchers Supporting Project Number(TURSP-2020/115)Taif University,Taif,Saudi Arabia.This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R239)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Pedestrian detection and tracking are vital elements of today’s surveillance systems,which make daily life safe for humans.Thus,human detection and visualization have become essential inventions in the field of computer vision.Hence,developing a surveillance system with multiple object recognition and tracking,especially in low light and night-time,is still challenging.Therefore,we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night.In particular,we propose a system that tackles a two-fold problem by detecting multiple pedestrians in infrared(IR)images using machine learning and tracking them using particle filters.Moreover,a random forest classifier is adopted for image segmentation to identify pedestrians in an image.The result of detection is investigated by particle filter to solve pedestrian tracking.Through the extensive experiment,our system shows 93%segmentation accuracy using a random forest algorithm that demonstrates high accuracy for background and roof classes.Moreover,the system achieved a detection accuracy of 90%usingmultiple templatematching techniques and 81%accuracy for pedestrian tracking.Furthermore,our system can identify that the detected object is a human.Hence,our system provided the best results compared to the state-ofart systems,which proves the effectiveness of the techniques used for image segmentation,classification,and tracking.The presented method is applicable for human detection/tracking,crowd analysis,and monitoring pedestrians in IR video surveillance.
文摘This novel method of Pedestrian Tracking using Support Vector (PTSV) proposed for a video surveillance instrument combines the Support Vector Machine (SVM) classifier into an optic-flow based tracker. The traditional method using optical flow tracks objects by minimizing an intensity difference function between successive frames, while PTSV tracks objects by maximizing the SVM classification score. As the SVM classifier for object and non-object is pre-trained, there is need only to classify an image block as object or non-ob-ject without having to compare the pixel region of the tracked object in the previous frame. To account for large motions between successive frames we build pyramids from the support vectors and use a coarse-to-fine scan in the classification stage. To accelerate the training of SVM, a Sequential Minimal Optimization Method (SMO) is adopted. The results of using a kernel-PTSV for pedestrian tracking from real time video are shown at the end. Comparative experimental results showed that PTSV improves the reliability of tracking compared to that of traditional tracking method using optical flow.
基金Our research in this paper was partially supported by JST COI JPMJCE1317.
文摘Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has received significant attention from vehicle safety analysts.However,pedestrian protection in parking lots still faces many challenges.For example,the physical structure of a parking lot may be complex,and dead corners would occur when the vehicle density is high.These lead to pedestrians’sudden appearance in the vehicle’s path from an unexpected position,resulting in collision accidents in the parking lot.We advocate that besides vehicular sensing data,high-precision digital map of the parking lot,pedestrians’smart device’s sensing data,and attribute information of pedestrians can be used to detect the position of pedestrians in the parking lot.However,this subject has not been studied and explored in existing studies.Tofill this void,this paper proposes a pedestrian tracking framework integrating multiple information sources to provide pedestrian position and status information for vehicles and protect pedestrians in parking spaces.We also evaluate the proposed method through real-world experiments.The experimental results show that the proposed framework has its advantage in pedestrian attribute information extraction and positioning accuracy.It can also be used for pedestrian tracking in parking spaces.
基金the National Natural Science Foundation of China(No.61976080,61771006)the Key Project of Henan Province Education Department(No.19A413006).
文摘Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Firstly,the occlusion judgment is realized by extracting and utilizing deep feature of pedestrian’s appearance,and then the scale adaptive kernelized correlation filter is introduced to implement pedestrian tracking without occlusion.Secondly,Karman filter is introduced to predict the location of occluded pedestrian position.Finally,the deep feature is used to the rematch of pedestrian in the reappearance process.Simulation experiment and analysis show that the proposed algorithm can effectively detect and rematch pedestrian under the condition of frequent or long-term occlusion.
文摘Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that exist in it such as crimes,thefts,and so on.Besides,the anomaly detection in pedestrian walkways has gained significant attention among the computer vision communities to enhance pedestrian safety.The recent advances of Deep Learning(DL)models have received considerable attention in different processes such as object detec-tion,image classification,etc.In this aspect,this article designs a new Panoptic Feature Pyramid Network based Anomaly Detection and Tracking(PFPN-ADT)model for pedestrian walkways.The proposed model majorly aims to the recognition and classification of different anomalies present in the pedestrian walkway like vehicles,skaters,etc.The proposed model involves panoptic seg-mentation model,called Panoptic Feature Pyramid Network(PFPN)is employed for the object recognition process.For object classification,Compact Bat Algo-rithm(CBA)with Stacked Auto Encoder(SAE)is applied for the classification of recognized objects.For ensuring the enhanced results better anomaly detection performance of the PFPN-ADT technique,a comparison study is made using Uni-versity of California San Diego(UCSD)Anomaly data and other benchmark data-sets(such as Cityscapes,ADE20K,COCO),and the outcomes are compared with the Mask Recurrent Convolutional Neural Network(RCNN)and Faster Convolu-tional Neural Network(CNN)models.The simulation outcome demonstrated the enhanced performance of the PFPN-ADT technique over the other methods.
基金the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2012-H0301-12-2006)The Brain Korea 21 Project in 2012
文摘This paper proposes a pedestrian tracking approach using bounding box based on probability densities.It is generally a difficult task to track features like corner points in outdoor images due to complex environment.To solve this problem,the feature points are projected along X and Y direction separately,and a histogram is constructed for each projection,with horizontal axis as positions and vertical axis as the number of feature points that lie on each position.Finally,the vertical axis is normalized for expression as probability.After histogram is constructed,the probability of each feature point is checked with a threshold.A feature point will be ignored if its probability is lower than a threshold,while the remaining feature points are grouped,based on which a bounding box is made.Kanade-Lucas Tomasi(KLT)algorithm is adopted as the tracking algorithm because it is able to track local features in images robustly.The efficiency of the tracking results using this method is verified in real environment test.
文摘Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
文摘In recent years, modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through social and physical forces, which is an approach that has been used to simulate crowd behaviour. The target of this work is to describe a comprehensive approach to model a huge number of pedestrians and to simulate high density crowd behaviour in overcrowding places, e.g. sport, concert and pilgrimage places, and to assist engineering in the resolution of complicated problems through integrating a number of models from different research domains.
基金supported in part by a Research Grant for Young Faculty in Shenzhen Polytechnic(No.601522K30015)Shenzhen Committee of Science,Technology and Innovation(No.JCYJ20160407160609492)
文摘Indoor pedestrian localization is of great importance for diverse mobile applications. Many indoor localization approaches have been proposed; among them, Radio Signal Strength (RSS)-based approaches have the advantage of existing infrastructures and avoid the cost of infrastructure deployment. However, the RSS-based localization approaches suffer from poor localization accuracy when the RSS fingerprints are sparse, as illustrated by actual experiments in this study. Here, we propose a novel indoor pedestrian tracking approach for smartphone users; this approach provides a high localization accuracy when the RSS fingerprints are sparse. Besides using the RSS fingerprints, this approach also utilizes the inertial sensor readings on smartphones. This approach has two components: (i) dead-reckoning subsystem that counts the number of walking steps with off-the-shelf inertial sensor readings on smartphones and (ii) particle filtering that computes the locations with only sparse RSS readings. The proposed approach is implemented on Android-based smartphones. Extensive experiments are carried out in both srnafl and large testbeds, The evaluation results show that the tracking approach can achieve a high accuracy of 5 m (up to 95%) in indoor environments with only sparse RSS fingerprints.