The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray ...The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.展开更多
Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carri...Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.展开更多
Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the...Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the breakage critical state plane(BCSP).A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP.Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio-pressure index,which was also incorporated into the formulations of the bounding stress ratio and plastic modulus.A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials,and was shown to sufficiently capture the breakage phenomenon.展开更多
Grain crushing is commonly encountered in deep foundation engineering,high rockfill dam engineering,railway engineering,mining engineering,coastal engineering,petroleum engineering,and other geoscience application.Gra...Grain crushing is commonly encountered in deep foundation engineering,high rockfill dam engineering,railway engineering,mining engineering,coastal engineering,petroleum engineering,and other geoscience application.Grain crushing is affected by fundamental soil characteristics,such as their mineral strength,grain size and distribution,grain shape,density and specimen size,and also by external factors including stress magnitude and path,loading rate and duration,degree of saturation,temperature and geochemical environment.Crushable material becomes a series of different materials with the change in its grading during grain crushing,resulting in a decrease in strength and dilatancy and an increase in compressibility.Effects of grain crushing on strength,dilatancy,deformation and failure mechanisms have been extensively investigated through laboratory testing,discrete element method(DEM)modelling,Weibull statistics,and constitutive modelling within the framework of the extended crushing-dependent critical state theory or the energy-based theory.Eleven papers summarized in this review article for this special issue addressed the above issues in grain crushing through the advanced testing and modelling.展开更多
Crushing is a size reduction process that plays a key role in both mineral processing and crushing–screening plant design. Investigations on rock crushability have become an important issue in mining operations and t...Crushing is a size reduction process that plays a key role in both mineral processing and crushing–screening plant design. Investigations on rock crushability have become an important issue in mining operations and the manufacture of industrial crusher equipment. The main objective of this research is to quantify the crushability of hard rocks based on their mineralogical and mechanical properties. For this purpose, the mineralogical, physical, and mechanical properties of various hard rocks were determined. A new compressive crushing value(CCV) testing methodology was proposed. The results obtained from CCV tests were compared with those from mineralogical inspections, rock strength as well as mechanical aggregate tests. Strong correlations were found between CCV and several rock and aggregate properties such as uniaxial compressive strength(UCS), the brittleness index(S_(20)), and aggregate impact value(AIV). Furthermore, the relationship between the mineralogical properties of the rocks and their CCVs were established. It is concluded that the proposed testing methodology is simple and highly repeatable and could be utilized as a pre-design tool in the design stage of the crushing process for rock quarries.展开更多
The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on fo...The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.展开更多
An experimental study is presented to measure the elastic,yielding,and crushing properties of individual particles under compression using substrates made of aluminum alloy,stainless steel,and sapphire.Carefully selec...An experimental study is presented to measure the elastic,yielding,and crushing properties of individual particles under compression using substrates made of aluminum alloy,stainless steel,and sapphire.Carefully selected,highly spherical individual Ottawa sand particles of 0.75e1.1 mm in nominal diameter were compressed between two smooth substrates,and the loadedeformation curves were analyzed by Hertz elastic contact theory to derive their reduced modulus and Young’s modulus as well as yielding and crushing strengths,which vary significantly with the type of substrate materials.Further analysis of the yielding and plastic deformation at the particle-substrate contact shows that the yield strength or hardness of the substrate materials dominates the local contact behavior and hence affects the measured apparent yielding and crushing strengths.The two softer substrates(aluminum alloy and stainless steel)actually lead to underestimated apparent shear yield strengths of quartz particles by 60.4%and 54.2%,respectively,which are actually the yielding of substrates,while the true particle yielding occurs in the sapphire-particle contact.Moreover,the two softer substrates cause much overestimated crushing strengths of the quartz particles by 50.4%and 36.4%,respectively.Selection of inappropriate substrate materials and inappropriate interpretation of the particle-substrate contact can lead to significant errors in the measured yielding and crushing strengths.It is recommended that single particle compression testing uses substrates with yield strength greater than that of the tested particles and result interpretation also considers the elastic and yielding behaviors of the substrates.展开更多
The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as f...The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as fine aggregates, which passes through 5 mm sieve, in proportions of 5%, 10%, 15%, 20% and 25% by weight to replace partially river sand and crushed gneiss, and the both sand of the same size as the aggregate respectively. Experimental results show that density of mortar and the compressive strength of mortar decrease globally with the increase in wood ash content. At 56 days, and for all replacements with wood ash, compressive strengths values of mortar obtained with the mixture of wood ash and river sand is greater than 20 MPa, which is not the case for mortar made with crushed gneiss and wood ash. Moreover, for 5% of replacement with wood ash, compressive strengths of mortar obtained with the mixture of wood ash and river sand and the mixture of wood ash and crushed gneiss are respectively 37 MPa and 32 MPa at 56 days. These values satisfied the strength requirements. Hence, 5% replacement of crushed gneiss with wood ash is suggested and could be benefit for mortar. In addition, the replacement of sand by wood ash is preferable with river sand which contains fewer fines than crushed gneiss. The compressive strength of mortar with 25% wood ash + river sand could be suitable.展开更多
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r...The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.展开更多
The permeability,alkali silica reaction,workability and strength of GHPC(green high performance concrete) were studied in this paper.The results show that GHPC has an excellent durability and the effects of mass rat...The permeability,alkali silica reaction,workability and strength of GHPC(green high performance concrete) were studied in this paper.The results show that GHPC has an excellent durability and the effects of mass ratio of flyash to high calcium slag,water binder ratio,content of water reducer,and crushed coarse aggregate type on the workability and strength of GHPC were considerably evident.A new path for the concretes continuous development was put forward.展开更多
We continue here our previous work where SD powders were significantly strengthened by irradiation with electrons of lower energy under smaller dose. Previous results were obtained from the crushing strength analysis,...We continue here our previous work where SD powders were significantly strengthened by irradiation with electrons of lower energy under smaller dose. Previous results were obtained from the crushing strength analysis, no XRD was applied. In present work, powders of synthetic diamond with low strengthwere sorted on sets with different grain size. As established, the sets had various crushing strengths and morphology. They were irradiated with high energy electrons (6.5 MeV, D = 2 × 1019 and D = 6 × 1019 cm?2, Tirr = 450 K) and analyzed using XRD (CuKα) before and after irradiation. Nonlinear dependences a(Θ) = f{R(Θ), where a(Θ) is lattice constant and R(Θ) is Raily function, and the discovered extra-splits (additional to α1-α2-doublets on CuKα) of basic peaks in XRD patterns from the SD sets, testified that crystal lattice of diamond in sets was variously distorted, like of cBN doped with rare earth elements. As established, the first irradiation led to decreasing distortions, the more significantly the higher initial strength of the set. The second irradiation produced softening and increasing distortions of crystal lattice of diamond, the more effectively the less initial strength of diamond. XRD allows indirectly to presort synthetic diamond off the material with critically low relative mechanical strength as well as evaluate resistance of diamond crystal lattice against heavy irradiation and other external impacts.展开更多
The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the c...The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the constituent materials, age of concrete and exposure contact conditions were varied. The coarse aggregate type employed in the study was crushed granite. The compressive strength and abrasion resistance of concretes were tested between at ages 7 to 70 days and 100 - 500 revolutions of abrasion wheels respectively. The study revealed that the compressive strength and abrasion resistance had the optimal performance when the coarse aggregate content was 45% and the worst performance when the fine aggregate content was 28.7% of the total weight of concrete constituents. There was a remarkable loss of concrete particles to wear between 200 revs and 300 revs of abrasion wheel contact. Concrete grade in excess of 60 N/mm2 is required to resist abrasion beyond 200 revolutions of abrasion wheel contact on concrete specimens. Concretes investigated also showed weak resistance to deep abrasion at and above 300 revolutions of abrasion wheel contact.展开更多
The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm wa...The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.展开更多
基金financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2015BAB19B02)the National Program on Key Basic Research Project of China (No. 2013CB632603)
文摘The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.
基金financial support from the 111 Project (Grant No. B13024)the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848)the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681)the State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1810)
文摘Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.
基金financial support from the 111 Project (Grant No. B13024)the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848)the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681)
文摘Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the breakage critical state plane(BCSP).A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP.Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio-pressure index,which was also incorporated into the formulations of the bounding stress ratio and plastic modulus.A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials,and was shown to sufficiently capture the breakage phenomenon.
基金financial support from the National Science Foundation of China (Grant Nos. 51922024, 41831282, 51678094 and 51578096)
文摘Grain crushing is commonly encountered in deep foundation engineering,high rockfill dam engineering,railway engineering,mining engineering,coastal engineering,petroleum engineering,and other geoscience application.Grain crushing is affected by fundamental soil characteristics,such as their mineral strength,grain size and distribution,grain shape,density and specimen size,and also by external factors including stress magnitude and path,loading rate and duration,degree of saturation,temperature and geochemical environment.Crushable material becomes a series of different materials with the change in its grading during grain crushing,resulting in a decrease in strength and dilatancy and an increase in compressibility.Effects of grain crushing on strength,dilatancy,deformation and failure mechanisms have been extensively investigated through laboratory testing,discrete element method(DEM)modelling,Weibull statistics,and constitutive modelling within the framework of the extended crushing-dependent critical state theory or the energy-based theory.Eleven papers summarized in this review article for this special issue addressed the above issues in grain crushing through the advanced testing and modelling.
基金financially supported by Zonguldak Bülent Ecevit University(No.2016-98150330-01)
文摘Crushing is a size reduction process that plays a key role in both mineral processing and crushing–screening plant design. Investigations on rock crushability have become an important issue in mining operations and the manufacture of industrial crusher equipment. The main objective of this research is to quantify the crushability of hard rocks based on their mineralogical and mechanical properties. For this purpose, the mineralogical, physical, and mechanical properties of various hard rocks were determined. A new compressive crushing value(CCV) testing methodology was proposed. The results obtained from CCV tests were compared with those from mineralogical inspections, rock strength as well as mechanical aggregate tests. Strong correlations were found between CCV and several rock and aggregate properties such as uniaxial compressive strength(UCS), the brittleness index(S_(20)), and aggregate impact value(AIV). Furthermore, the relationship between the mineralogical properties of the rocks and their CCVs were established. It is concluded that the proposed testing methodology is simple and highly repeatable and could be utilized as a pre-design tool in the design stage of the crushing process for rock quarries.
文摘The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.41372304 and 51679198),and China Scholarship Council Fellowship awarded to the first author.The authors are grateful to Dr.Yibing Deng of the University of Massachusetts Amherst for acquiring the optical images of sand particles.
文摘An experimental study is presented to measure the elastic,yielding,and crushing properties of individual particles under compression using substrates made of aluminum alloy,stainless steel,and sapphire.Carefully selected,highly spherical individual Ottawa sand particles of 0.75e1.1 mm in nominal diameter were compressed between two smooth substrates,and the loadedeformation curves were analyzed by Hertz elastic contact theory to derive their reduced modulus and Young’s modulus as well as yielding and crushing strengths,which vary significantly with the type of substrate materials.Further analysis of the yielding and plastic deformation at the particle-substrate contact shows that the yield strength or hardness of the substrate materials dominates the local contact behavior and hence affects the measured apparent yielding and crushing strengths.The two softer substrates(aluminum alloy and stainless steel)actually lead to underestimated apparent shear yield strengths of quartz particles by 60.4%and 54.2%,respectively,which are actually the yielding of substrates,while the true particle yielding occurs in the sapphire-particle contact.Moreover,the two softer substrates cause much overestimated crushing strengths of the quartz particles by 50.4%and 36.4%,respectively.Selection of inappropriate substrate materials and inappropriate interpretation of the particle-substrate contact can lead to significant errors in the measured yielding and crushing strengths.It is recommended that single particle compression testing uses substrates with yield strength greater than that of the tested particles and result interpretation also considers the elastic and yielding behaviors of the substrates.
文摘The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as fine aggregates, which passes through 5 mm sieve, in proportions of 5%, 10%, 15%, 20% and 25% by weight to replace partially river sand and crushed gneiss, and the both sand of the same size as the aggregate respectively. Experimental results show that density of mortar and the compressive strength of mortar decrease globally with the increase in wood ash content. At 56 days, and for all replacements with wood ash, compressive strengths values of mortar obtained with the mixture of wood ash and river sand is greater than 20 MPa, which is not the case for mortar made with crushed gneiss and wood ash. Moreover, for 5% of replacement with wood ash, compressive strengths of mortar obtained with the mixture of wood ash and river sand and the mixture of wood ash and crushed gneiss are respectively 37 MPa and 32 MPa at 56 days. These values satisfied the strength requirements. Hence, 5% replacement of crushed gneiss with wood ash is suggested and could be benefit for mortar. In addition, the replacement of sand by wood ash is preferable with river sand which contains fewer fines than crushed gneiss. The compressive strength of mortar with 25% wood ash + river sand could be suitable.
基金Supported by the National Mega-Project of Key Technology R&D Program in the 11th Five-Year Plan of China (No.2006BAJ04A04)the Education Department of Liaoning Province, China (No. 2008282)
文摘The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.
文摘The permeability,alkali silica reaction,workability and strength of GHPC(green high performance concrete) were studied in this paper.The results show that GHPC has an excellent durability and the effects of mass ratio of flyash to high calcium slag,water binder ratio,content of water reducer,and crushed coarse aggregate type on the workability and strength of GHPC were considerably evident.A new path for the concretes continuous development was put forward.
文摘We continue here our previous work where SD powders were significantly strengthened by irradiation with electrons of lower energy under smaller dose. Previous results were obtained from the crushing strength analysis, no XRD was applied. In present work, powders of synthetic diamond with low strengthwere sorted on sets with different grain size. As established, the sets had various crushing strengths and morphology. They were irradiated with high energy electrons (6.5 MeV, D = 2 × 1019 and D = 6 × 1019 cm?2, Tirr = 450 K) and analyzed using XRD (CuKα) before and after irradiation. Nonlinear dependences a(Θ) = f{R(Θ), where a(Θ) is lattice constant and R(Θ) is Raily function, and the discovered extra-splits (additional to α1-α2-doublets on CuKα) of basic peaks in XRD patterns from the SD sets, testified that crystal lattice of diamond in sets was variously distorted, like of cBN doped with rare earth elements. As established, the first irradiation led to decreasing distortions, the more significantly the higher initial strength of the set. The second irradiation produced softening and increasing distortions of crystal lattice of diamond, the more effectively the less initial strength of diamond. XRD allows indirectly to presort synthetic diamond off the material with critically low relative mechanical strength as well as evaluate resistance of diamond crystal lattice against heavy irradiation and other external impacts.
文摘The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the constituent materials, age of concrete and exposure contact conditions were varied. The coarse aggregate type employed in the study was crushed granite. The compressive strength and abrasion resistance of concretes were tested between at ages 7 to 70 days and 100 - 500 revolutions of abrasion wheels respectively. The study revealed that the compressive strength and abrasion resistance had the optimal performance when the coarse aggregate content was 45% and the worst performance when the fine aggregate content was 28.7% of the total weight of concrete constituents. There was a remarkable loss of concrete particles to wear between 200 revs and 300 revs of abrasion wheel contact. Concrete grade in excess of 60 N/mm2 is required to resist abrasion beyond 200 revolutions of abrasion wheel contact on concrete specimens. Concretes investigated also showed weak resistance to deep abrasion at and above 300 revolutions of abrasion wheel contact.
文摘The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.