Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point...Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.展开更多
Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioen...Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.展开更多
The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical co...The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.展开更多
The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic ...The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.展开更多
A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to ...A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.展开更多
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-fie...Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.展开更多
We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isos...We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.展开更多
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
High-energy proton microbeam facilities are powerful tools in space science,biology and cancer therapy studies.The primary limitations of the 50 MeV proton microbeam system are the poor beam quality provided by the cy...High-energy proton microbeam facilities are powerful tools in space science,biology and cancer therapy studies.The primary limitations of the 50 MeV proton microbeam system are the poor beam quality provided by the cyclotron and the problem of intense scattering in the slit position.Here,we present an optical design for a cyclotron-based 50 MeV high-energy proton microbeam system with a micron-sized resolution.The microbeam system,which has an Oxford triplet lens configuration,has relatively small spherical aberrations and is insensitive to changes in the beam divergence angle and momentum spread.In addition,the energy filtration included in the system can reduce the beam momentum spread from 1 to 0.02%.The effects of lens parasitic aberrations and the lens fringe field on the beam spot resolution are also discussed.In addition,owing to the severe scattering of 50 MeV protons in slit materials,a slit system model based on the Geant4 toolkit enables the quantitative analysis of scattered protons and secondary particles.For the slit system settings under a 10-micron final beam spot,very few scattered protons can enter the quadrupole lens system and affect the focusing performance of the microbeam system,but the secondary radiation of neutrons and gamma rays generated at the collimation system should be considered for the 50 MeV proton microbeam.These data demonstrate that a 50 MeV proton microbeam system with a micron-sized beam spot based on a cyclotron is feasible.展开更多
Modern chromatography is increasingly focused on miniaturization and integration. Compared to conventional liquid chromatography, microfluidic chip liquid chromatography(microchip-LC) has the potential due to its zero...Modern chromatography is increasingly focused on miniaturization and integration. Compared to conventional liquid chromatography, microfluidic chip liquid chromatography(microchip-LC) has the potential due to its zero-dead volume connection and ease of integration. Nano-sized packings have the potential to significantly enhance separation performance in microchip-LC. However, their application has been hindered by packing difficulties. This study presents a method for packing nano-sized silica particles into a microchannel as the stationary phase. The microchip-LC packed column was prepared by combining the weir and the porous silica single-particle as frit to retain the packing particles. A surface tensionbased single-particle picking technique was established to insert porous single-particle frit into glass microchannels. Additionally, we developed a slurry packing method that utilizes air pressure to inject nano-sized packing into the microchannel. Pressure-driven chromatographic separation was performed using this nano-packed column integrated into a glass microchip. The mixture of four PAHs was successfully separated within just 8 min using a 5 mm separation channel length, achieving high theoretical plates(10~6plates/m). Overall, these findings demonstrate the potential of utilizing nano-sized packings for enhancing chromatographic performance in microchip systems.展开更多
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t...Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area.展开更多
On the basis of the Euler-Bernoulli hypothesis, nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of ...On the basis of the Euler-Bernoulli hypothesis, nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed. When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.展开更多
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p...The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.展开更多
In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation m...In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation model is established, the single event effect(SEE) simulation is further carried out on the basis of Si Ge HBT devices, and then, together with the laser microbeam test, the charge collection behaviors are analyzed, including the single event transient(SET) induced transient terminal currents, and the sensitive area of SEE charge collection. The simulations and experimental results are discussed in detail and it is demonstrated that the nature of the current transient is controlled by the behaviors of the collector–substrate(C/S) junction and charge collection by sensitive electrodes, thereby giving out the sensitive area and electrode of SiGe HBT in SEE.展开更多
文摘Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.
文摘Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.
基金supported by the the National Major Technologies R&D Programme of China during the 10th Five-Year Plan Period(No.2001BA302B)the National Science Foundation for Distinguished Young Scholars(No.10225526)+1 种基金the Knowledge Innovation Programme of the Chinese Academy of Sciences(No.KSCX2-SW-324)the Foundation for University Key Teacher by the Ministry of Education(No.2005jq1135).
文摘The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.
基金The project supported by the National Science Foundation of in Anhui Province,China(No.01046201)
文摘The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.
基金The project supported by the National Major Technologies R&D Program of China for the 10th Five-Year Plan Period (No.2001BA302B)the magnitude instrument development project of the Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 19875054)the National Science Fund for Distinguished Young Scholars (No. 10225526)
文摘A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
基金supported by the National Natural Science Foundation of China(No.U2032141)the Natural Science Foundation of Henan Province(No.202300410479,No.202300410480)+1 种基金the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.
基金National Natural Science Foundation of China under Grant Nos.10535010 and 10775068the State Key Basic Research Program under Grant No.2007CB815004+1 种基金the CAS Knowledge Innovation Project under Grant No.KJCX2-SW-N02the Research Fund of High Education under Grant No.20010284036
文摘We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
基金supported by the National Natural Science Foundation of China(Nos.1197283,U1632271)the National Key R&D Program of China(No.2021YFA1601400).
文摘High-energy proton microbeam facilities are powerful tools in space science,biology and cancer therapy studies.The primary limitations of the 50 MeV proton microbeam system are the poor beam quality provided by the cyclotron and the problem of intense scattering in the slit position.Here,we present an optical design for a cyclotron-based 50 MeV high-energy proton microbeam system with a micron-sized resolution.The microbeam system,which has an Oxford triplet lens configuration,has relatively small spherical aberrations and is insensitive to changes in the beam divergence angle and momentum spread.In addition,the energy filtration included in the system can reduce the beam momentum spread from 1 to 0.02%.The effects of lens parasitic aberrations and the lens fringe field on the beam spot resolution are also discussed.In addition,owing to the severe scattering of 50 MeV protons in slit materials,a slit system model based on the Geant4 toolkit enables the quantitative analysis of scattered protons and secondary particles.For the slit system settings under a 10-micron final beam spot,very few scattered protons can enter the quadrupole lens system and affect the focusing performance of the microbeam system,but the secondary radiation of neutrons and gamma rays generated at the collimation system should be considered for the 50 MeV proton microbeam.These data demonstrate that a 50 MeV proton microbeam system with a micron-sized beam spot based on a cyclotron is feasible.
基金supported by the National Natural Science Foundation of China (No.21936001)the Beijing Outstanding Young Scientist Program (No.BJJWZYJH01201910005017)。
文摘Modern chromatography is increasingly focused on miniaturization and integration. Compared to conventional liquid chromatography, microfluidic chip liquid chromatography(microchip-LC) has the potential due to its zero-dead volume connection and ease of integration. Nano-sized packings have the potential to significantly enhance separation performance in microchip-LC. However, their application has been hindered by packing difficulties. This study presents a method for packing nano-sized silica particles into a microchannel as the stationary phase. The microchip-LC packed column was prepared by combining the weir and the porous silica single-particle as frit to retain the packing particles. A surface tensionbased single-particle picking technique was established to insert porous single-particle frit into glass microchannels. Additionally, we developed a slurry packing method that utilizes air pressure to inject nano-sized packing into the microchannel. Pressure-driven chromatographic separation was performed using this nano-packed column integrated into a glass microchip. The mixture of four PAHs was successfully separated within just 8 min using a 5 mm separation channel length, achieving high theoretical plates(10~6plates/m). Overall, these findings demonstrate the potential of utilizing nano-sized packings for enhancing chromatographic performance in microchip systems.
基金Under the auspices of National Natural Science Foundation of China (No.42101044,42077188,52109007)。
文摘Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area.
文摘On the basis of the Euler-Bernoulli hypothesis, nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed. When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)the Graduate Innovation Program of China University of Petroleum(East China)(No.YCX2019084)
文摘The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.
基金supported by the National Natural Science Foundation of China(Grant No.61274106)
文摘In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation model is established, the single event effect(SEE) simulation is further carried out on the basis of Si Ge HBT devices, and then, together with the laser microbeam test, the charge collection behaviors are analyzed, including the single event transient(SET) induced transient terminal currents, and the sensitive area of SEE charge collection. The simulations and experimental results are discussed in detail and it is demonstrated that the nature of the current transient is controlled by the behaviors of the collector–substrate(C/S) junction and charge collection by sensitive electrodes, thereby giving out the sensitive area and electrode of SiGe HBT in SEE.