In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-fie...Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.展开更多
The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic ...The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.展开更多
Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point...Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.展开更多
Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioen...Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.展开更多
We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isos...We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.展开更多
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis...In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.展开更多
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas...Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.展开更多
The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical co...The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.展开更多
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.展开更多
In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedfr...In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedframework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques,which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency andoveremphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective featureextraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Liegroup domains to highlight fundamental motion patterns, coupled with employing competitive weighting forprecise target deformation field generation. Our empirical evaluations confirm TEMT’s superior performancein handling diverse PET lung datasets compared to existing image registration networks. Experimental resultsdemonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometricphantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. Tofacilitate further research and practical application, the TEMT framework, along with its implementation detailsand part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt.展开更多
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ...Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.展开更多
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio...Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.展开更多
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles ...The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金supported by the National Natural Science Foundation of China(No.U2032141)the Natural Science Foundation of Henan Province(No.202300410479,No.202300410480)+1 种基金the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.
基金The project supported by the National Science Foundation of in Anhui Province,China(No.01046201)
文摘The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.
文摘Single-particle microbeam is uniquely capable of precisely delivering a preset number of charged particles to individual cells or sub-cellular targets to be determined in vitro, It is crucial to find a reference point that relates the microbeam's location to the microscope's plane, and align individual targets at this reference point for cell irradiation. To choose an appropriate reference point, an approach based on analysing the intensity distribution of fluorescence in a thin scintillator excited by traversing particles is newly developed using the CAS-LIBB single-particle microbeam, which features decisive physical signification and sufficient resolution. As its bonus, this on-line analysis provides precise and fast response to the determination of beam profile and potentially optimizes the microbeam quality by further adjusting hardware setup.
文摘Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.
基金National Natural Science Foundation of China under Grant Nos.10535010 and 10775068the State Key Basic Research Program under Grant No.2007CB815004+1 种基金the CAS Knowledge Innovation Project under Grant No.KJCX2-SW-N02the Research Fund of High Education under Grant No.20010284036
文摘We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.
基金National Key Research and Development Program,Ministry of Science and Technology of China under Grant No.2022YFC3803004the National Natural Science Foundation of China under Grant No.51838004。
文摘In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222215,52072051)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2023NSCQ-JQX0003).
文摘Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.
基金supported by the the National Major Technologies R&D Programme of China during the 10th Five-Year Plan Period(No.2001BA302B)the National Science Foundation for Distinguished Young Scholars(No.10225526)+1 种基金the Knowledge Innovation Programme of the Chinese Academy of Sciences(No.KSCX2-SW-324)the Foundation for University Key Teacher by the Ministry of Education(No.2005jq1135).
文摘The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.
基金the Competitive Research Fund of the University of Aizu,Japan.
文摘Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
基金the National Natural Science Foundation of China(No.82160347)Yunnan Provincial Science and Technology Department(No.202102AE090031)Yunnan Key Laboratory of Smart City in Cyberspace Security(No.202105AG070010).
文摘In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedframework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques,which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency andoveremphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective featureextraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Liegroup domains to highlight fundamental motion patterns, coupled with employing competitive weighting forprecise target deformation field generation. Our empirical evaluations confirm TEMT’s superior performancein handling diverse PET lung datasets compared to existing image registration networks. Experimental resultsdemonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometricphantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. Tofacilitate further research and practical application, the TEMT framework, along with its implementation detailsand part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt.
基金supported by the National Natural Science Foundation of China(51875061)China Scholarship Council(202206050107)。
文摘Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.
基金the National Natural Science Foundation of China(Grant Nos.62272478,62202496,61872384).
文摘Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12372251 and 12132015)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.2023YW69).
文摘The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.