Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and contr...Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.展开更多
Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected fr...Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.展开更多
Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop f...Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop for different types of consumers.Reducing losses and improving voltage profiles in rural distribution networks are significant challenges for electricity distribution companies.However different solutions were proposed in the literature to overcome these challenges,most of them face difficulties when applied in the conventional distribution network.To address the above issues,an applicable solution is proposed in this paper by installing a number of small-capacity distribution transformers instead of every single large-capacity transformer in rural areas.The proposed approach is implemented in the branch network of Al-Hoqool village,which belongs to the Nineveh distribution network.The network has been inspected on-site,drawn,and analyzed using the electrical systems analysis program(ETAP).The analysis showed that using the single-phase pole-mounted transformers can improve the voltage in the network’s end by 29%and enhance the voltage profile for all consumers.The analysis has also demonstrated that the modification can reduce the total power losses by 78%compared to the existing network.Concerning the economic aspect,the payback period for the proposed network is assigned to be 20 months.展开更多
A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of th...A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.展开更多
Scaling analysis is widely used to design scaled-down experimental facilities through which the prototype phenomena can be effectively evaluated.As a new method,dynamic system scaling(DSS)must be verified as a rationa...Scaling analysis is widely used to design scaled-down experimental facilities through which the prototype phenomena can be effectively evaluated.As a new method,dynamic system scaling(DSS)must be verified as a rational and applicable method.A DSS method based on dilation transformation was evaluated using single-phase natural circulation in a simple rectangular loop.The scaled-down cases were constructed based on two parameters—length ratio and dilation number—and the corresponding transient processes were simulated using the Relap5 computational code.The results show that this DSS method can simulate the dynamic flow characteristics of scaled-down cases.The transient deviation of the temperature difference and mass flow rate of the scaled cases decrease with increases in the length ratio and dilation number.The distortion of the transient temperature difference is smaller than that of the mass flow;however,the overall deviation is within a reasonable range.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
Power system inherently consists of capacitance and inductance in its components. Equipment with saturable inductance and circuit capacitance provides circumstances of generating ferroresonance, resulting in overvolta...Power system inherently consists of capacitance and inductance in its components. Equipment with saturable inductance and circuit capacitance provides circumstances of generating ferroresonance, resulting in overvoltage and overcurrent in the connected system. The effects of ferroresonance result in insulation failure and hence damage to the equipment is unavoidable. Though many devices are proposed for mitigating such circumstances, a promising technology of using memristors may provide better performance than others in the future. A memristor emulator using the N-channel JFET J310 is used in this work. Unlike other electronic components that replicate memristor properties, the chosen memristor emulator is a passive device since it does not need any external power supply. Simulation and experimental results verify the design of a memristor emulator and the characteristics of an ideal memristor. Experimental results prove that the memristor emulator can suppress the fundamental ferroresonance induced in a prototype single phase transformer. The results of the harmonic analysis also validate the memristor performance against the conventional technique.展开更多
基金This work is funded by the Anhui Natural Science Foundation Project of China(under Grant KJ2016A201)the National Natural Science Foundation of China(under Grant 11774378).
文摘Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.
文摘Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.
文摘Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop for different types of consumers.Reducing losses and improving voltage profiles in rural distribution networks are significant challenges for electricity distribution companies.However different solutions were proposed in the literature to overcome these challenges,most of them face difficulties when applied in the conventional distribution network.To address the above issues,an applicable solution is proposed in this paper by installing a number of small-capacity distribution transformers instead of every single large-capacity transformer in rural areas.The proposed approach is implemented in the branch network of Al-Hoqool village,which belongs to the Nineveh distribution network.The network has been inspected on-site,drawn,and analyzed using the electrical systems analysis program(ETAP).The analysis showed that using the single-phase pole-mounted transformers can improve the voltage in the network’s end by 29%and enhance the voltage profile for all consumers.The analysis has also demonstrated that the modification can reduce the total power losses by 78%compared to the existing network.Concerning the economic aspect,the payback period for the proposed network is assigned to be 20 months.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61773006.
文摘A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.
文摘Scaling analysis is widely used to design scaled-down experimental facilities through which the prototype phenomena can be effectively evaluated.As a new method,dynamic system scaling(DSS)must be verified as a rational and applicable method.A DSS method based on dilation transformation was evaluated using single-phase natural circulation in a simple rectangular loop.The scaled-down cases were constructed based on two parameters—length ratio and dilation number—and the corresponding transient processes were simulated using the Relap5 computational code.The results show that this DSS method can simulate the dynamic flow characteristics of scaled-down cases.The transient deviation of the temperature difference and mass flow rate of the scaled cases decrease with increases in the length ratio and dilation number.The distortion of the transient temperature difference is smaller than that of the mass flow;however,the overall deviation is within a reasonable range.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘Power system inherently consists of capacitance and inductance in its components. Equipment with saturable inductance and circuit capacitance provides circumstances of generating ferroresonance, resulting in overvoltage and overcurrent in the connected system. The effects of ferroresonance result in insulation failure and hence damage to the equipment is unavoidable. Though many devices are proposed for mitigating such circumstances, a promising technology of using memristors may provide better performance than others in the future. A memristor emulator using the N-channel JFET J310 is used in this work. Unlike other electronic components that replicate memristor properties, the chosen memristor emulator is a passive device since it does not need any external power supply. Simulation and experimental results verify the design of a memristor emulator and the characteristics of an ideal memristor. Experimental results prove that the memristor emulator can suppress the fundamental ferroresonance induced in a prototype single phase transformer. The results of the harmonic analysis also validate the memristor performance against the conventional technique.