Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were estab...Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.展开更多
This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent o...This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.展开更多
Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)a...Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)and incremental conductance(INC)methods have advantages such as ease of implementation,but they also have the challenge of selecting the most optimized perturbation step or increment size while considering the trade-off between convergence time and oscillation.To address these issues,an MPPT solution for grid-connected photovoltaic(PV)systems is proposed that combines the golden section search(GSS),P&O,and INC methods to simultaneously achieve faster convergence and smaller oscillation,converging to the MPP by repeatedly narrowing the width of the interval at the rate of the golden ratio.The proposed MPPT technique was applied to a PV system consisting of a PV array,boost chopper,and inverter.Simulation and experimental results verify the feasibility and effectiveness of the proposed MPPT technique,by which the system is able to locate the MPP in 36 ms and regain a drifting MPP in approximately 30 ms under transient performance.The overall MPPT efficiency is 98.99%.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51107016)the National Basic Research Program of China(Grant No.2013CB035605)the Postdoctoral Science Research Developmental Foundation of Heilongjiang Province,China(Grant No.LHB-Q12086)
文摘Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.
基金supported by the Program Research Grant UMPEDAC-2020(No. MOHE HICOE-UMPEDAC)the Ministry of Education Malaysia (No.RU003-2020, RU002-2021)the University of Malaya。
文摘This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.
基金Supported in part by the Natural Sciences and Engineering Research Council of Canadain part by the Atlantic Innovation Fund.
文摘Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)and incremental conductance(INC)methods have advantages such as ease of implementation,but they also have the challenge of selecting the most optimized perturbation step or increment size while considering the trade-off between convergence time and oscillation.To address these issues,an MPPT solution for grid-connected photovoltaic(PV)systems is proposed that combines the golden section search(GSS),P&O,and INC methods to simultaneously achieve faster convergence and smaller oscillation,converging to the MPP by repeatedly narrowing the width of the interval at the rate of the golden ratio.The proposed MPPT technique was applied to a PV system consisting of a PV array,boost chopper,and inverter.Simulation and experimental results verify the feasibility and effectiveness of the proposed MPPT technique,by which the system is able to locate the MPP in 36 ms and regain a drifting MPP in approximately 30 ms under transient performance.The overall MPPT efficiency is 98.99%.