First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mecha...First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is...With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is a prerequisite for rapid isolation of faults and restoration of the power supply.In this paper,a fault location method based on community graph depth-first traversal is proposed for fast location of single-phase ground faults in distribution networks.First,this paper defines the fault graph weight of the vertices in the distribution network graph model,which can be used to reflect the topology of the vertices and fault points as well as the fluctuation of the vertices’currents.Then,the vertices on the graph model are clustered by using an improved parallel louvain method(IPLM).Finally,the community formed by IPLM is used as the smallest unit for depth-first traversal to achieve fast and accurate location of the fault section.The paper develops a distribution network graph model of IEEE 33-bus system on the graph database for testing.And three other methods are selected for comparison with IPLMDF.The test results show that IPLMDF can achieve fast and accurate fault location when half of the nodes in the distribution network are equipped with D-PMUs.When some of the D-PMUs lose time synchronization,it is still possible to locate the fault section,and at the same time,the locating results can be avoided by falling into local optimal solutions.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
基金the financial support from the National MCF Energy R&D Program of China (2018YFE0306100)the National Natural Science Foundation of China (51971249)the State Key Laboratory for Powder Metallurgy,Central South University,Changsha,China
文摘First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
基金supported by the National Natural Science Foundation of China (Grant Nos.52009106,51779206)the National Key R&D Program of China (No.2018YFB1500800)the Natural Science Fund Youth Project of Shaanxi Province (2019J-130).
文摘With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is a prerequisite for rapid isolation of faults and restoration of the power supply.In this paper,a fault location method based on community graph depth-first traversal is proposed for fast location of single-phase ground faults in distribution networks.First,this paper defines the fault graph weight of the vertices in the distribution network graph model,which can be used to reflect the topology of the vertices and fault points as well as the fluctuation of the vertices’currents.Then,the vertices on the graph model are clustered by using an improved parallel louvain method(IPLM).Finally,the community formed by IPLM is used as the smallest unit for depth-first traversal to achieve fast and accurate location of the fault section.The paper develops a distribution network graph model of IEEE 33-bus system on the graph database for testing.And three other methods are selected for comparison with IPLMDF.The test results show that IPLMDF can achieve fast and accurate fault location when half of the nodes in the distribution network are equipped with D-PMUs.When some of the D-PMUs lose time synchronization,it is still possible to locate the fault section,and at the same time,the locating results can be avoided by falling into local optimal solutions.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.