This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase ...This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.展开更多
For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the tra...For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.展开更多
A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a tr...A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.展开更多
In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a thre...In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.展开更多
Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is deco...Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.展开更多
This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit wa...This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit was designed to use only feedback variables of the converter itself that can be measured locally.In the proposed approach,the adjacent bus voltage is indirectly derived from the measured DG converter output voltage,DG line current and line impedance.A voltage closed-loop controller and a current closed-loop controller are designed to achieve both functions of DG real power generation and harmonics compensation.Therefore,the traditional harmonic measurement devices installed at the bus as well as the long distance communication between the bus and the DG converter are not required.The proposed approach can compensate the current harmonics,mitigate the buses voltage distortion and enable the customer devices to be operated in normal conditions within the multi-bus microgrid,and meanwhile relieve the burden of power quality regulator installed at the point of common coupling.Matlab simulations and experimental results are presented to show the operational effectiveness of the proposed approach.展开更多
文摘This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.
基金supported by the National Natural Science Foundation of China under Grant 61733015,62473322High-Speed Railway Joint Funds of National Natural Science Foundation of China under Grant U1934204.
文摘For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.
文摘A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.
文摘In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.
文摘Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.
文摘This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit was designed to use only feedback variables of the converter itself that can be measured locally.In the proposed approach,the adjacent bus voltage is indirectly derived from the measured DG converter output voltage,DG line current and line impedance.A voltage closed-loop controller and a current closed-loop controller are designed to achieve both functions of DG real power generation and harmonics compensation.Therefore,the traditional harmonic measurement devices installed at the bus as well as the long distance communication between the bus and the DG converter are not required.The proposed approach can compensate the current harmonics,mitigate the buses voltage distortion and enable the customer devices to be operated in normal conditions within the multi-bus microgrid,and meanwhile relieve the burden of power quality regulator installed at the point of common coupling.Matlab simulations and experimental results are presented to show the operational effectiveness of the proposed approach.