In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-ba...Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-based multi-labelclassification framework to reliably distinguish the faulty feeder.Three different neural networks (NNs) including the multilayerperceptron, one-dimensional convolutional neural network (1DCNN), and 2D CNN are built. However, the labeled data maybe difficult to obtain in the actual environment. We use thesimplified simulation model based on a full-scale test field (FSTF)to obtain sufficient labeled source data. Being different frommost learning-based methods, assuming that the distribution ofsource domain and target domain is identical, we propose asamples-based transfer learning method to improve the domainadaptation by using samples in the source domain with properweights. The TrAdaBoost algorithm is adopted to update theweights of each sample. The recorded data obtained in the FSTFare utilized to test the domain adaptability. According to ourvalidation and testing, the validation accuracies are high whenthere is sufficient labeled data for training the proposed NNs.The proposed 2D CNN has the best domain adaptability. TheTrAdaBoost algorithm can help the NNs to train an efficientclassifier that has better domain adaptation. It has been thereforeconcluded that the proposed method, especially the 2D CNN, issuitable for actual distribution networks.展开更多
With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equi...With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.展开更多
This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to ...This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa...Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.展开更多
针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,...针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。展开更多
目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,...目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,根据传递函数的相关性提出了P范数判据。利用ATP-EMTP搭建10 kV配电网线路,对比了2范数与P范数判据在复杂配电网中的定位性能,并验证了所提判据在混合配电网线路的适用性。最后,分析了配电网发生低阻抗及高阻抗接地故障下P范数判据的鲁棒性。仿真结果表明,该方法在过渡电阻高达3 kΩ的情况下能准确定位,且定位精度高,受噪声、故障类型和采样频率的影响小。展开更多
Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Th...Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Therefore,most researchers tend to focus on a feeder with single fault while disregarding secondary faults.This paper presents a fault feeder identification method that considers secondary earth faults in a non-effectively grounded distribution network.First,the wavelet singular entropy method is used to detect a secondary fault event.This method can identify the moment at which a secondary fault occurs.The zero-sequence current data can be categorized into two fault stages.The first and second fault stages correspond to the first and secondary faults,respectively.Subsequently,a similarity matrix containing the time-frequency transient information of the zero-sequence current at the two fault stages is defined to identify the fault feeders.Finally,to confirm the effectiveness and reliability of the proposed method,we conduct simulation experiments and an adaptability analysis based on an electromagnetic transient program.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
基金the Key Program of the Chinese Academy of Sciences under Grant QYZDJ-SSW-JSC025in part by the National Natural Science Foundation of China under Grant 51721005,and in part by the Chinese Scholarship Council(CSC).
文摘Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-based multi-labelclassification framework to reliably distinguish the faulty feeder.Three different neural networks (NNs) including the multilayerperceptron, one-dimensional convolutional neural network (1DCNN), and 2D CNN are built. However, the labeled data maybe difficult to obtain in the actual environment. We use thesimplified simulation model based on a full-scale test field (FSTF)to obtain sufficient labeled source data. Being different frommost learning-based methods, assuming that the distribution ofsource domain and target domain is identical, we propose asamples-based transfer learning method to improve the domainadaptation by using samples in the source domain with properweights. The TrAdaBoost algorithm is adopted to update theweights of each sample. The recorded data obtained in the FSTFare utilized to test the domain adaptability. According to ourvalidation and testing, the validation accuracies are high whenthere is sufficient labeled data for training the proposed NNs.The proposed 2D CNN has the best domain adaptability. TheTrAdaBoost algorithm can help the NNs to train an efficientclassifier that has better domain adaptation. It has been thereforeconcluded that the proposed method, especially the 2D CNN, issuitable for actual distribution networks.
基金supported by the National Natural Science Foundation of China(NO.51877018).
文摘With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.
文摘This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-Suppression Method for Single-Phase Grounding Fault in Distribution Networks(No.51677030).
文摘Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.
文摘针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。
文摘目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,根据传递函数的相关性提出了P范数判据。利用ATP-EMTP搭建10 kV配电网线路,对比了2范数与P范数判据在复杂配电网中的定位性能,并验证了所提判据在混合配电网线路的适用性。最后,分析了配电网发生低阻抗及高阻抗接地故障下P范数判据的鲁棒性。仿真结果表明,该方法在过渡电阻高达3 kΩ的情况下能准确定位,且定位精度高,受噪声、故障类型和采样频率的影响小。
基金This work was supported in part by National Science Foundation of China(No.51907097)National Key R&D Program of China(No.2020YFF0305800)+1 种基金the Full-time Postdoc Research and Development Fund of Sichuan University in China(No.2019SCU12003)the Applied Basic Research of Sichuan Province(No.2020YJ0012).
文摘Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Therefore,most researchers tend to focus on a feeder with single fault while disregarding secondary faults.This paper presents a fault feeder identification method that considers secondary earth faults in a non-effectively grounded distribution network.First,the wavelet singular entropy method is used to detect a secondary fault event.This method can identify the moment at which a secondary fault occurs.The zero-sequence current data can be categorized into two fault stages.The first and second fault stages correspond to the first and secondary faults,respectively.Subsequently,a similarity matrix containing the time-frequency transient information of the zero-sequence current at the two fault stages is defined to identify the fault feeders.Finally,to confirm the effectiveness and reliability of the proposed method,we conduct simulation experiments and an adaptability analysis based on an electromagnetic transient program.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.