Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide...Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.展开更多
A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationsh...A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.展开更多
This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink powe...This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.展开更多
To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail tra...To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.展开更多
This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase ...This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.展开更多
In order to enhance the stability of single-phase microgrid,virtual synchronous generator(VSG)control method is investigated in this paper.Its electromagnetic model and electromechanical model are established to illus...In order to enhance the stability of single-phase microgrid,virtual synchronous generator(VSG)control method is investigated in this paper.Its electromagnetic model and electromechanical model are established to illustrate the performance of VSG.Considering the 2 nd fluctuation of fundamental-frequency in the output power,an instantaneous power calculation strategy is proposed based on the intrinsic frequency of single-phase VSG.Besides,a virtual power calculation method is presented to achieve islanded/grid-connected seamless transition.Stability analysis and comparison simulation results demonstrate the correctness of the presented power calculation method.At last,the effectiveness of the proposed approach is verified by comparison experiments of islanded/gridconnected operations in a 500 VA single-phase inverter.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,...为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,利用该响应信号的功率谱密度特征曲线确定局部最大同步挤压算子中滑动窗的宽度;再次,通过局部最大同步挤压算子进行时频重排;最后,采用模极大值改进算法提取瞬时频率曲线。通过两个数值算例、一个滑动窗宽参数分析和一个时变拉索试验验证了所提方法的有效性,研究结果表明:利用功率谱密度特征曲线能够有效确定滑动窗的窗宽和模极大值算法的提取范围。相比局部最大同步挤压变换算法,基于滑动窗宽优化的LMSSGST具有更佳的瞬时频率识别效果。展开更多
基金financial support from the China Postdoctoral Science Foundation(No.2023TQ0210)the Postdoctoral Fellowship Program of CPSF(No.GZB20230403)+1 种基金the Fundamental Research Funds for the Central Universities(Shanghai Jiao Tong University)the Innovative Research Groups of the National Natural Science Foundation of China(No.51521004)。
文摘Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.
基金the National Key Research and Development Program of China(Grant No.2018YFB1801003)the National Natural Science Foundation of China(Grant Nos.61525501 and 61827817)the Beijing Natural Science Foundation,China(Grant No.4192022).
文摘A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.
文摘This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.
文摘To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.
文摘This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB02708201)
文摘In order to enhance the stability of single-phase microgrid,virtual synchronous generator(VSG)control method is investigated in this paper.Its electromagnetic model and electromechanical model are established to illustrate the performance of VSG.Considering the 2 nd fluctuation of fundamental-frequency in the output power,an instantaneous power calculation strategy is proposed based on the intrinsic frequency of single-phase VSG.Besides,a virtual power calculation method is presented to achieve islanded/grid-connected seamless transition.Stability analysis and comparison simulation results demonstrate the correctness of the presented power calculation method.At last,the effectiveness of the proposed approach is verified by comparison experiments of islanded/gridconnected operations in a 500 VA single-phase inverter.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
文摘为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,利用该响应信号的功率谱密度特征曲线确定局部最大同步挤压算子中滑动窗的宽度;再次,通过局部最大同步挤压算子进行时频重排;最后,采用模极大值改进算法提取瞬时频率曲线。通过两个数值算例、一个滑动窗宽参数分析和一个时变拉索试验验证了所提方法的有效性,研究结果表明:利用功率谱密度特征曲线能够有效确定滑动窗的窗宽和模极大值算法的提取范围。相比局部最大同步挤压变换算法,基于滑动窗宽优化的LMSSGST具有更佳的瞬时频率识别效果。