During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc...During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.展开更多
In order to overcome many limitations of the conventional power supplies, such as ponderosity, big wastage, and simplex output characteristic, a dual-inverter power supply is designed to meet the different requirement...In order to overcome many limitations of the conventional power supplies, such as ponderosity, big wastage, and simplex output characteristic, a dual-inverter power supply is designed to meet the different requirements of micro-arc oxidation. The main circuit structure and principle of the dual-inverter power supply for micro-arc oxidation is described, the control system and the control adjustment method are also introduced. The dual-inverter technology is adopted in micro-arc oxidation power supply. The limited bipolar control mode is applied in the power inverter circuit for adjusting the voltage, and various voltage waveform can be obtained by controlling the chopper circuit. Meanwhile, the control accuracy and response speed are improved greatly because of the higher inverter frequency. The power supply can output direct current(DC) waveform, DC pulse waveform, symmetry alternating current(AC) waveform, asymmetry AC waveform, and so on. Besides, the parameters such as pulse width, range, frequency, duty cycle can be adjusted. The experimental result shows that the power supply has many advantages, such as stable output, wonderful waveform consistency and obvious advantage in technique, and it can meet the requirements of micro-arc oxidation process fully.展开更多
The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topolo...The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.展开更多
To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail tra...To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.展开更多
A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed ...A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.展开更多
In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter ...In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.展开更多
This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabiliz...This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.展开更多
From the viewpoint of reliability and practicability, a general design method and the related considerationsfor transistor- inverted welding power supplies are proposed in this paper. The detail contents are composed ...From the viewpoint of reliability and practicability, a general design method and the related considerationsfor transistor- inverted welding power supplies are proposed in this paper. The detail contents are composed of the choice ofinverters, the choice and protection of transistors, the determination of inverting frequency, the design of transformers,and the choice of output rectifiers and rectifying diodes. Besides, a concrete design example of the transistor-invertedpower supply for plasma arc cutting is introduced.展开更多
Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacito...Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer less connection to medium and high voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.展开更多
This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EF...This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EFCC consists of eighteen sector coils installed inside the vacuum vessel, six in the toroidal direction and three in the poloidal direction, each one rated for 30 kA-turn. As a result, star point connection is proposed for each group of six EFCC coils installed cyclically in the toroidal direction for decoupling with poloidal field coils. In addition~ a six phase inverter which is capable of controlling each phase current was chosen as PS topology to ensure higher flexibility of operation with reasonable cost.展开更多
This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events ...This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events of grid power outage. However, grid-integration of a back-up power supply substantiates continual power transfer to the loads, especially to the critical loads, which should not suffer from power interruptions. Therefore, design and circuit modeling of switching converters based reliable grid-tied emergency back-up power supply are presented in this paper. There are a rectifier-link boost derived battery charging circuit and a 4-switch push-pull power inverter circuit which are controlled by high frequency pulse width modulation (PWM) signals. This paper presents a state averaging model and Laplace domain transfer function of the charging circuit and a switching converter model of the power inverter circuit. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed inverter circuit and during on-grid situations, battery is charged by an ac-link rectifier-fed boost converter. However, there is a relay switching circuit to control the charging phenomenon of the battery. The proposed design is simulated in PLECS and the simulation results corroborate the reliability of the presented framework.展开更多
Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirabl...Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirable side effects such as the generation of distorted input current waveform. The input power factor is also poor. Further, the input current has the shape of narrow pulses, which in turn increases its value. The reduction in input current harmonics and improved power factor operation of motor drive systems and switching power supplies are important from the energy saving point of view and also to satisfy the harmonic standards. This paper proposes a full bridge PWM rectifier with load current feedforward. The proposed approach has some advantages, including a quick response for the load fluctuation, the reduction of the number of sensors and simplified control, as compared with the conventional methods. From simulated results, it is clarified that the proposed control method is effective and useful.展开更多
基金This article was supported by the general project“Research on Wind and Photovoltaic Fault Characteristics and Practical Short Circuit Calculation Model”(521820200097)of Jiangxi Electric Power Company.
文摘During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.
基金supported by Guangdong Provincial Science and Technology Foundation of China (Grant No. 2007B010400050)
文摘In order to overcome many limitations of the conventional power supplies, such as ponderosity, big wastage, and simplex output characteristic, a dual-inverter power supply is designed to meet the different requirements of micro-arc oxidation. The main circuit structure and principle of the dual-inverter power supply for micro-arc oxidation is described, the control system and the control adjustment method are also introduced. The dual-inverter technology is adopted in micro-arc oxidation power supply. The limited bipolar control mode is applied in the power inverter circuit for adjusting the voltage, and various voltage waveform can be obtained by controlling the chopper circuit. Meanwhile, the control accuracy and response speed are improved greatly because of the higher inverter frequency. The power supply can output direct current(DC) waveform, DC pulse waveform, symmetry alternating current(AC) waveform, asymmetry AC waveform, and so on. Besides, the parameters such as pulse width, range, frequency, duty cycle can be adjusted. The experimental result shows that the power supply has many advantages, such as stable output, wonderful waveform consistency and obvious advantage in technique, and it can meet the requirements of micro-arc oxidation process fully.
文摘The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.
文摘To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.
基金Supported by National Natural Science Foundation of China(No.51205136)Ph.D. Programs Foundation of the Ministry of Education of China(No.20100172120003)+1 种基金Competitive Allocation Project Special Fund of Guangdong Province Chinese Academy of Sciences Comprehensive Strategic Cooperation(No.2013B091500082)The Fundamental Research Funds for the Central Universities(Key Program)(No.2015ZZ084)
文摘A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.
文摘In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.
文摘This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.
文摘From the viewpoint of reliability and practicability, a general design method and the related considerationsfor transistor- inverted welding power supplies are proposed in this paper. The detail contents are composed of the choice ofinverters, the choice and protection of transistors, the determination of inverting frequency, the design of transformers,and the choice of output rectifiers and rectifying diodes. Besides, a concrete design example of the transistor-invertedpower supply for plasma arc cutting is introduced.
文摘Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer less connection to medium and high voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.
基金supported within the framework of the "Broader Approach Internationals Agreement"
文摘This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EFCC consists of eighteen sector coils installed inside the vacuum vessel, six in the toroidal direction and three in the poloidal direction, each one rated for 30 kA-turn. As a result, star point connection is proposed for each group of six EFCC coils installed cyclically in the toroidal direction for decoupling with poloidal field coils. In addition~ a six phase inverter which is capable of controlling each phase current was chosen as PS topology to ensure higher flexibility of operation with reasonable cost.
文摘This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events of grid power outage. However, grid-integration of a back-up power supply substantiates continual power transfer to the loads, especially to the critical loads, which should not suffer from power interruptions. Therefore, design and circuit modeling of switching converters based reliable grid-tied emergency back-up power supply are presented in this paper. There are a rectifier-link boost derived battery charging circuit and a 4-switch push-pull power inverter circuit which are controlled by high frequency pulse width modulation (PWM) signals. This paper presents a state averaging model and Laplace domain transfer function of the charging circuit and a switching converter model of the power inverter circuit. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed inverter circuit and during on-grid situations, battery is charged by an ac-link rectifier-fed boost converter. However, there is a relay switching circuit to control the charging phenomenon of the battery. The proposed design is simulated in PLECS and the simulation results corroborate the reliability of the presented framework.
文摘Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirable side effects such as the generation of distorted input current waveform. The input power factor is also poor. Further, the input current has the shape of narrow pulses, which in turn increases its value. The reduction in input current harmonics and improved power factor operation of motor drive systems and switching power supplies are important from the energy saving point of view and also to satisfy the harmonic standards. This paper proposes a full bridge PWM rectifier with load current feedforward. The proposed approach has some advantages, including a quick response for the load fluctuation, the reduction of the number of sensors and simplified control, as compared with the conventional methods. From simulated results, it is clarified that the proposed control method is effective and useful.